

HARNESSING TECHNOLOGY Northe MARREGHTER

CAPT JT Elder Commanding Officer NSWC Crane

Dr. Brett Seidle, SES Technical Director

NSWC Crane

Suppressed Upper Receiver Group Testing Methods Abstract #19422

Author: Johnathon Parker Presented by: Caleb McGee Date: 4 May 2017

Distribution Statement A – approved for public release; distribution unlimited

HARNESSING TECHNOLOGY FOR THE WARFIGHTER

- Suppressed Upper Receiver Group (SURG)
- Mr. Caleb McGee speaking on behalf of Mr. Johnathon Parker Lead SURG Engineer for NSWC Crane
- United States Special Operations Command (USSOCOM) Acquisition Program
 - RFP: H92222-17-R-0011
 - 48Mil full and open Indefinite Delivery / Indefinite Quantity (IDIQ) requirement
 - Multiple Award Scenario

- Currently fielded weapon systems are not designed to be suppressed continuously.
- Currently fielded assault rifles use ammunition and suppressors not designed as a system.

Distribution Statement A – approved for public release; distribution unlimited

SURG Improvements

- SURG Performance Specification designed to produce:
 - Improved reliability and endurance over legacy unsuppressed systems
 - Improved thermal characteristics
 - Improved System durability
 - Reduce the toxic fume and blowback exposure to operators

SURG Acquisition Structure

Acquisition structure broken in three phases Phase 1 Phase One Vendor Qty: ~15 Full and open competition. Testing with Go / No Go Criteria **Down Selection IDIQ** Awards Fourteen Thresholds tested in Phase one. Phase Two Developmental Testing on three ID/IQ contract Phase 2 Vendor awarded vendors. Qty: 3 More in depth test and evaluation of samples than phase one. Acquisition for Phase Three OT Operator testing final selection of primary vendor All testing outlined is phase one specific **Final Selection** For Acquisition

Thermal Testing

• Requirement

- Handguard temperature
- Signature of the system
- Momentary contact of suppressor on personnel
- All tested at 150 rounds in five minutes threshold (T) and 210 rounds in seven minutes objective (O).

Thermal Testing – Handguard Temp

- Verification
 - FLIR T440 setup 6ft from the weapon, perpendicular to the major weapon axis, at the same 3ft height from the ground.
 - Weapon, ammunition and magazines are at 72°F prior to testing.
 - Handguard temperature is measured at five minutes and seven minutes.
 - Five and seven minute test are done independently.

Thermal Testing

Distribution Statement A - approved for public release; distribution unlimited

HARNESSING TECHNOLOGY FOR THE WARFIGHTER

Durability Testing

Requirement

- Fire 240 rounds per Table II

Table II: Stress Test Firing Schedule	
30 round Magazine #	Rate of Fire
1	1 shot /sec.
2	2 shots / sec.
3	1 shot /sec.
4	3 to 5 shot bursts
5	1 shot /sec.
6	2 shots / sec.
7	1 shot /sec.
8	30 shot burst
Allow to Cool	1 Cycle = 240 shots

- Threshold six cycles
- **Objective twenty cycles**

Distribution Statement A – approved for public release; distribution unlimited

Durability Testing

- Verification
 - Operator has 5 seconds to reload weapon
 - Weapon is to fire the 240 rounds in continuum else the testing will be restarted per the test plan criteria.
 - Weapon is allowed to cool between 240 round "runs" to 120°F at the hottest point externally visible. Weapon inspected post 240 round completion.
 - Weapon will be shot until failure point is reached in accordance with (IAW) test plan.
 - Test conducted with operator in the loop.
 - Weapon was shot through protective barrier to ensure operator safety.
 - Destructive test designed to take equipment to failure.

Requirement

AVSEA

CRANE

- Phase one: Blowback comparative testing.
 - Not a quantitative measurement but a comparative test to the baseline M4A1 performance.
 - Done on one weapon per vendor.
- Phase two: Toxic fume measurement IAW
 ARDEC developed new procedure.
 - An in depth quantitative measurement.
 - Done on only three vendors samples.

- Phase One Verification
 - Weapon will be setup in remote firing fixture.
 - Weapon supported by the length of the MIL-STD
 1913 rail on the top of the weapon.

Distribution Statement A – approved for public release; distribution unlimited

- Weapon operating group submerged in colored CLP mixture for sixty seconds.
- Time operating group leaves CLP bath to firing weapon will be timed and conducted the same between each vendor.
- Witness paper will be placed around the weapon from the left of the muzzle to the right of the muzzle at constant distance of six inches.

- Weapon will be remotely fired inside the fixture with paper in place.
- The blowback produced from the weapon will be imprinted onto the paper.
- Weapon and paper will be reset for three concurrent tests.
- Upon completion of each round fired the paper will be placed flat and allowed to dry.
- Dry papers from the test weapon and the corresponding M4A1 will be compared for requirements verification.
- Photo analysis software will be used if test samples necessitate a more in depth comparison.

CRANE

Distribution Statement A - approved for public release; distribution unlimited

VAVSEA

WARFARE CENTERS

HARNESSING TECHNOLOGY FOR THE WARFIGHTER

- Phase Two Verification
 - Phase two testing has not been conducted to date.
 - Current test plan is to test the weapons making it into phase two per newly developed ARDEC Toxic Fumes Test.
 - This format of testing will utilize a sealed container with hole for projectile passage.
 - Measurement of the component gas makeups will be done with gas analyzers throughout the test chamber.
 - Per the TOPs the primary compounds for analysis should be Ammonia, carbon dioxide, carbon monoxide, sulfur dioxide and nitrogen oxides.

CRANE

Questions

Distribution Statement A – approved for public release; distribution unlimited

HARNESSING TECHNOLOGY FOR THE WARFIGHTER

Contact Information

Johnathon Parker Naval Special Warfare Center Crane Division 300 Highway 361 Crane, IN 47422 812.854.1810 johnathon.parker@navy.mil Caleb McGee Naval Special Warfare Center Crane Division 300 Highway 361 Crane, IN 47422 812.854.1843 caleb.mcgee@navy.mil

