
Act like someone’s life depends on what we do.

UNPARALLELED

COMMITMENT

&SOLUTIONS

Use of Multi-core Technology

in Fuzing Systems
Presented by:

Jeffrey Fornoff – ARDEC Fuze Division

U.S. ARMY ARMAMENT

RESEARCH, DEVELOPMENT

& ENGINEERING CENTER

NDIA 60th Annual Fuze Conference, May 9-11, 2017

UNCLASSIFIED

Distribution A. Approved for public release; distribution is Unlimited

UNCLASSIFIED

MAY 10 2017 2

PROBLEM STATEMENT

• Microprocessors have been utilized in fuzes and fuzing systems for many years

• Use of today's multi-core technology may be attractive for some high level munition fuzing and
initiation system applications requiring complex arm/disarm/rearm/continuous monitoring
capabilities. However to adequately address safety standard requirements, attention needs to
be given to the unique challenges posed by multi-core processing with respect to safety critical
software that controls Safe and Arming functions.

• Typical software architectures used for control of fuze safety system, (ex., command and
control of Safe and Arming functions) use some version of a virtual partition to isolate safety-
critical functions from mission-critical functions. With the advent of Real-time Operation
Systems (RTOS) that allows for software architecture partitioning, multi-core processor
technologies now predominantly are used and attention needs to be given to the unique
challenges of enabling multi-core processors with respect to RTOS and safety critical software.

• Safety critical software that executes on multi-core technologies must now consider temporal
aspects that can arise with multi-threaded software executing on multiple CPU cores not only in
terms of deterministic execution, but also on data integrity

• Currently, there are no standards by which developers can follow to implement safety functions
in a system architecture containing multi-core technology that insures hardware and software
failure modes are adequately identified and properly mitigated

• This discussion identifies unique engineering criteria that should be considered when
implementing safe and arming functions utilizing multi-core technologies. These criteria involve
both hardware and software design considerations.

UNCLASSIFIED

Distribution A. Approved for public release; distribution is Unlimited

UNCLASSIFIED

MAY 10 2017 3

MULTI-CORE UNIQUE ISSUES

• Compilers generate multiple execution threads to take advantage of multi-
core (multi-processor) technology

• Temporal issues arise as a result of multi-threaded code

– Different threads execute simultaneously on each CPU to increase
speed of the application

– Code becomes less deterministic because it has been broken down
into multiple execution threads (as analyzed by the compiler)

– Data that is accessed in multi-threaded code may end up in a race
condition

– In a multi-process environment (such as exists in operating systems)
additional programming constraints must be considered

• Hardware complexity also plays a role

– Shared memory between processors (CPUs)

• Cache memory

• Main memory

• Secondary storage

– Possible hardware race conditions

UNCLASSIFIED

Distribution A. Approved for public release; distribution is Unlimited

UNCLASSIFIED

MAY 10 2017 4

TYPICAL MEMORY HIERARCHY

Registers (Memory)

CPU CORE 1

L2 Cache Memory

L1 Cache Memory

L3 Cache Memory

Registers (Memory)

CPU CORE 2

L1 Cache Memory

L2 Cache Memory

Main Memory

Memory Management Unit (MMU)

Processor

Secondary Storage

UNCLASSIFIED

Distribution A. Approved for public release; distribution is Unlimited

UNCLASSIFIED

MAY 10 2017 5

PARTITIONING STRATEGIES

• Partitioning is required to separate safety critical processing from non-
safety critical processing

– Software

• Safety functions should be designed and compiled as single-
threaded

• Safety functions isolated from other code

• Safety data isolated from other data

• Each safety function and its associated data is segregated as
well

– Hardware

• Since microprocessor hardware cannot be physically
separated (as it is contained in a single die), the use (or
execution) of the hardware must be separated

• Safety should have exclusive use of the hardware when
executing as much as physically possible

UNCLASSIFIED

Distribution A. Approved for public release; distribution is Unlimited

UNCLASSIFIED

MAY 10 2017 6

PARTITIONING CPU EXECUTION

Example shows how safety critical code execution is isolated from non-

safety critical execution. Safety critical code is single-threaded and

executes on only 1 core while other multi-threaded non-safety critical code

is allowed to execute on multi-cores simultaneously

UNCLASSIFIED

Distribution A. Approved for public release; distribution is Unlimited

UNCLASSIFIED

MAY 10 2017 7

USING EXISTING STANDARDS

• Hardware

– JOTP-51 Safety Features (SF) shall be functionally and physically
separated

– MIL-STD-882E Appendix B.2.2.5 Design Requirements to consider
physical partitioning of processors

• Software (code)

– MIL-STD-882E Task 208.1 Functional Hazard Analysis (FHA)
describes the need to partition Safety Critical Functions (SCFs)
and Safety Related Functions (SRFs) in the design architecture

– MIL-STD-882E Appendix B.2.2.5 Design Requirements to consider
the need to partition safety functions (software modules)

• Software (data)

– AOP-52 Section 4.10.21 Specifies that safety related data shall be
partitioned away from other non-safety related data

• There are additional design considerations needed when utilizing multi-
core technology where safety functions are implemented in software

UNCLASSIFIED

Distribution A. Approved for public release; distribution is Unlimited

UNCLASSIFIED

MAY 10 2017 8

ADDITIONAL CONSIDERATIONS

• Is the code running standalone or under the control of an operating
system?

– Standalone code is easier to analyze and test

– If using an operating system, a Real-time Operating System is
required

• Windows is NOT a RTOS – Microsoft actually warns against its
use for safety critical operations

• Linux is NOT a RTOS

• Is the code single-threaded or multi-threaded?

– Restrict the compiler from generating multi-threaded code

• Design the system architecture to partition hardware and software
elements of safety functions

• In addition to the verifying and validating the application, certification may
be needed for other software elements of the system such as

– The Operating System (OS)

– Compilers and Assemblers

– Application development software such as pre-processors and
deployment tools

UNCLASSIFIED

Distribution A. Approved for public release; distribution is Unlimited

UNCLASSIFIED

MAY 10 2017 9

REFERENCES

• MIL-STD-882E Department of Defense Standard Practice System

Safety

• JOTP-51 Technical Manual for the use of Logic Devices in Safety

Features

• AOP-52 Guidance of Software Safety Design and Assessment of

Munition-Related Computing Systems

• It should be noted that all software contained in fuzes or fuzing system

needs to be reviewed by the Army Fuze Safety Review Board (AFSRB)

– Safety Critical Code must be reviewed by the AFSRB Software

Safety Panel

– Requirements specified in AOP-52 must be satisfied

• If a fuze or fuzing system is identified as a joint program then software

must be reviewed by the Joint Services Software Safety Authorities

UNCLASSIFIED

Distribution A. Approved for public release; distribution is Unlimited

UNCLASSIFIED

MAY 10 2017 10

CONCLUSIONS / QUESTIONS

Questions?

UNCLASSIFIED

Distribution A. Approved for public release; distribution is Unlimited

UNCLASSIFIED

