

RV(M) VICTORY/IOP Case Study

WARFIGHTING LABORATORY

MARINE CORPS

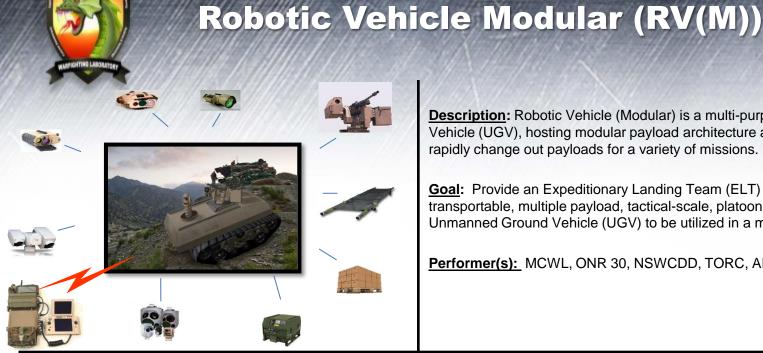
Concepts & Plans

Dave Stone MCWL GCE Robotics 22 March 2017

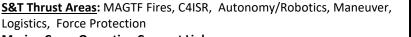
The overall classification level of this brief is: UNCLASSIFIED

We drive the future of the Marine Corps

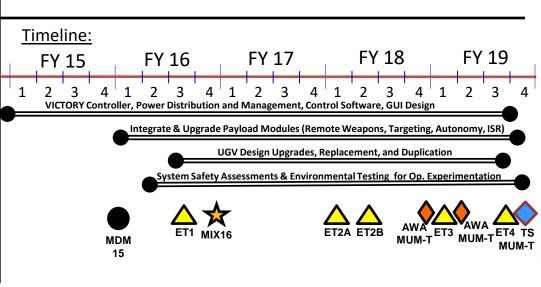
TING LABOR



- Overview of Robotic Vehicle Modular RV(M)
 - Expeditionary Modular Autonomous Vehicle
- Concepts of modular payloads
- VICTORY
- IOP
- Conclusion



Description: Robotic Vehicle (Modular) is a multi-purpose Unmanned Ground Vehicle (UGV), hosting modular payload architecture and providing the ability to rapidly change out payloads for a variety of missions.


Goal: Provide an Expeditionary Landing Team (ELT) with a highly mobile, MV-22 transportable, multiple payload, tactical-scale, platoon-level, infantry support Unmanned Ground Vehicle (UGV) to be utilized in a multitude of missions.

Performer(s): MCWL, ONR 30, NSWCDD, TORC, ARDEC, Pratt Miller

Marine Corps Operating Concept Linkages:

- Refine the concept of manned-unmanned teaming (MUM-T) to integrate robotic autonomous systems (RAS) with manned platforms and Marines. Develop CONOPs that support and embrace RAS as a critical enabler. (pg. 16)
- Exploit man-machine interface and manned-unmanned teaming to overcome challenges in urban terrain. Develop fires solutions that enable precise effects in compartmentalized terrain. (pg. 21)
- Incorporate as quickly as possible unmanned ground vehicles across the MAGTF to enhance survivability, increase lethality, and reduce manpower requirements. (pg. 22)
- Explore MUM-T technologies for logistics applications. (pg. 23) Stakeholders: MCWL, MCCDC, FMID, JGRIT, DGRA, JCRAS, ONR 30; DTRA, ARDEC, TARDEC, NSWCDD, TORC, PME

FUTURES DIRECTORATE

Robotic Vehicle Modular RV(M)

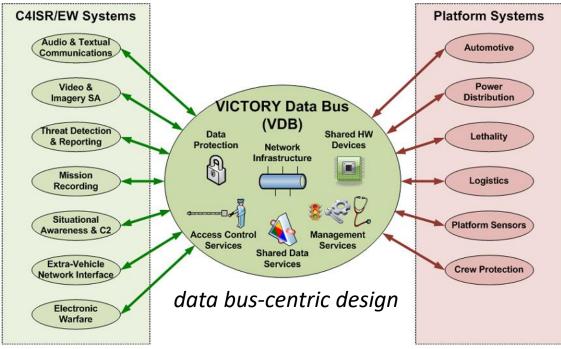
FUTURES DIRECTORATE

Modular Payloads

UNCLASSIFIED

MARINE CORPS

Ne Incastas Fatan



- Network Infrastructure
- Shared HW (computing, networking, GPS, etc.)
- Shared data services
- Management services
- Access control services (authentication and authorization)
- Data Protection (IA, network ٠ attacks)

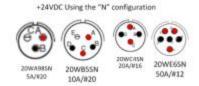
Minimum for VICTORY support:

Initiative Goal: Create a network-based architecture for integration of electronic systems on [manned] Army and Marine Corps ground vehicles

VICTORY Background

- VICTORY compliant Ethernet switch
- Time and position shared services
- VDB management services

UNCLASSIFIED • VICTORY shared processing unit



Ne Incastas Fatani

Payload-to-Vehicle Interface

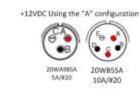
 This was part of the original RV(M) modularity concept, consisting of electrical, mechanical and software definitions.

CAN (8)

N/C

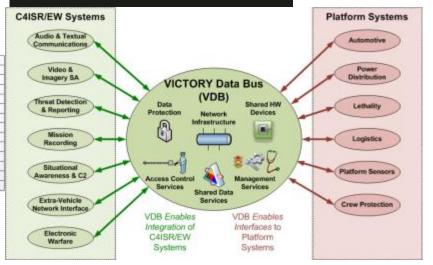
74/0

10


AVC.

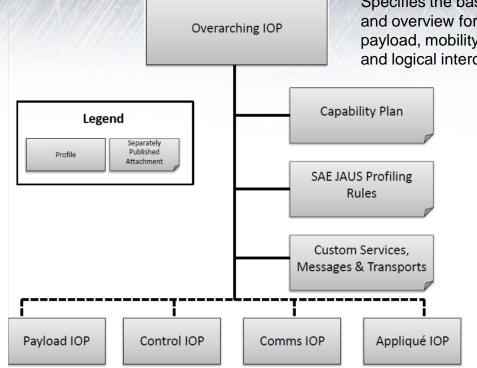
GND

20W


13

	These are the EPIC side connect			
25	Phil - 038999/20WA355X	R5-232 (N)	R5-422 (A)	
1990	1	18	Tite.	
14.00 61	2	N/C	TM-	
000	1 K	64	1014	
	4	N/C	105-	
D38999/	5	N/C	N/C	
20WA355N	4	GNO	GM0	
6 x #22				

Pm - 038999/30W8353N	GUL/NIT	Stavbard Color	15688 Signal(7m)	
1	4	Brown	LVasied(R)	
2	- 64	White/Brown	Unused(7)	
3	10	White/Ocange	Transmith(1)	
4	- 3-	Grange	Transmit-(2)	
5	2	Greate	Necerve-(6)	
	2+	White/Grows	Receive+(1)	
7	3.	Bhan .	(Insed)4)	
8	34	White/Blue	Unced(5)	
9	N/C			
10	N/C			
11	N/C			
12	N/C			
13	M.C.	S		



IOP Composition

Specifies the base concepts, architecture, requirements, and overview for the UGV IOP; specifically the platform, payload, mobility, on-vehicle network, communication, and logical interoperability messaging requirements.

Scopes and bounds the requirements basis for a given IOP Version

Specifies the manner in which the SAE AS-4 JAUS standards have been profiled

Specifies additional SAE AS-4 JAUS messages and transport protocols required to support the scope of the UGV IOP

Specifies the	Specifies the	Specifies the	Specifies the appliqué
payload	Operator Control Unit	communications	systems classification,
classification,	(OCU) logical	standards,	standards,
standards,	architecture,	requirements,	requirements, and
requirements,	standards, Human-	and conformance	conformance
and conformance	Machine Interface	approach	approach
approach	(HMI) requirements,	*Mark Mazzara, PM Force Projection IOP Brief25 April 2016 CLASSIFIED	

MARINE CORPS

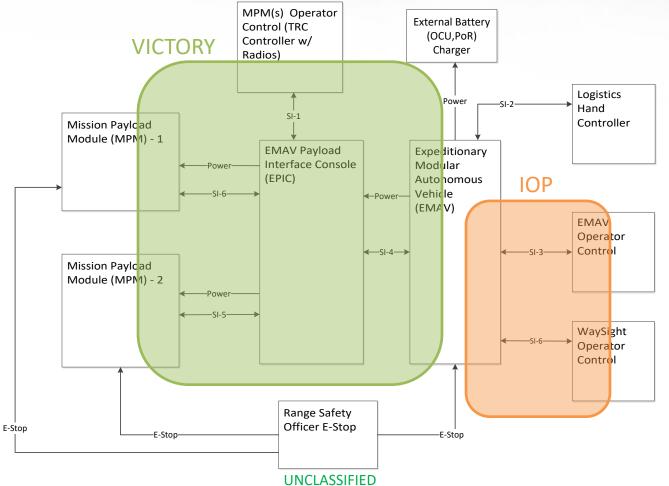
FUTURES DIRECTORATE

No Incautus Fatar

RV(M) – EMAV u-VICTORY Approach to Open Architecture

(*Modified from Mark Mazzara IOP Brief25 April 2016)

FUTURES DIRECTORATE



Robotic Vehicle Modular (RVM) -Interoperability

Overall approach to modularity / common interoperability:

- 1. VICTORY for C4ISR/EW and Platform interfaces for modular payloads
- 2. IOP for Warfighter Machine Interfaces (WMI) to Autonomy Kit (A-Kit)

10

- VICTORY for C4ISR/EW, Weapons and Platform interfaces for modular payloads
- Using the TARDEC produced VICTORY SDK
- Use of PM Force Protection IOP for UGV Command & Control
 - VICTORY Service-based (pub/sub) architecture and SOAP based management messaging not suited for UGV C2
 - IOP better suited for this.
- IOP for Warfighter Machine Interfaces (WMI) to Autonomy Kit (A-Kit) and Selected Payloads
- Additional Services/Component Types for RVM: TBD
 - Laser System (undefined/new)
 - Data Logging (experimental)
 - Camera Gimbal (updated)