
Exceptional service in the national interest

Rim-to-Rim Wearables At The Canyon for Health (R2R WATCH)

Presenter: Cliff Anderson-Bergman, PhD

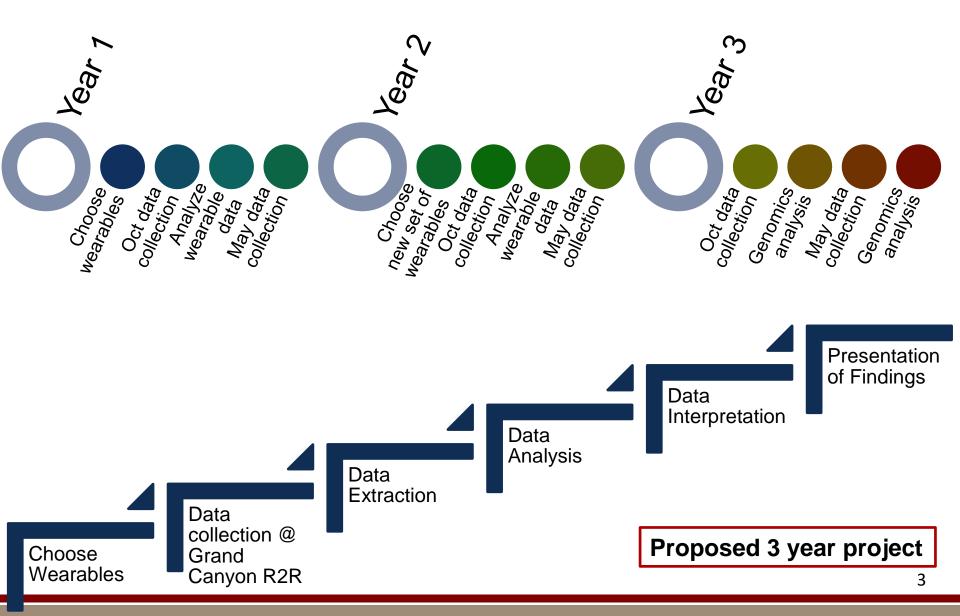
Principal Investigator: Glory Aviña, PhD MBA
Sandia National Laboratories

Purpose of this Study

1) Markers for Health:

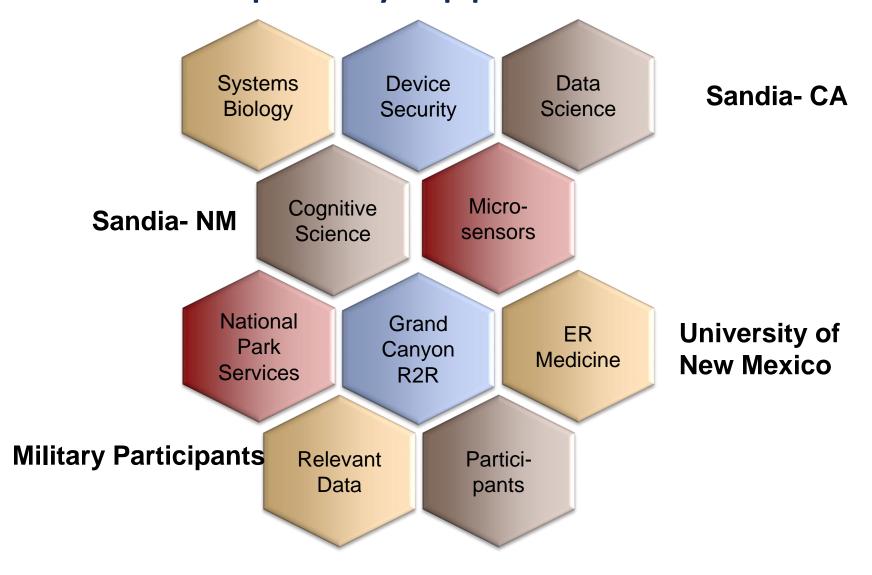
identify physiological, cognitive markers most related to health and task performance

2) Data Processing:

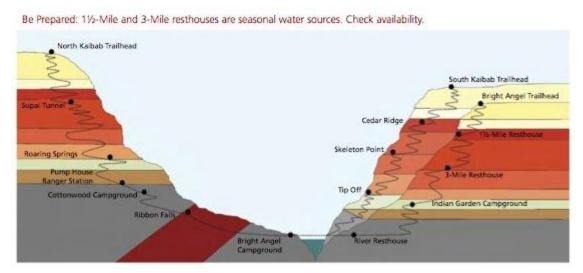

determine key methodologies for data processing from GOTS/COTS devices

3) BSVE Integration:

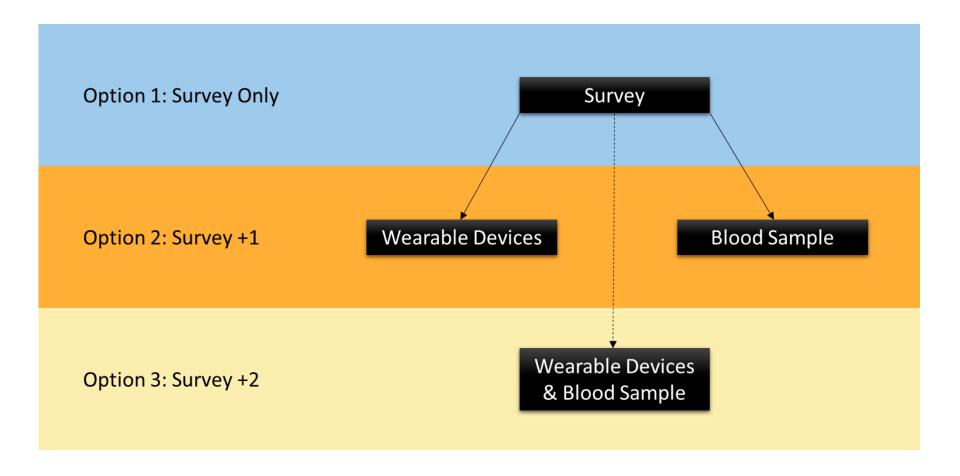
integrate data into the Biosurveillance Ecosystem (BSVE)


Experimental Design

Interdisciplinary Approach


Grand Canyon Rim-2-Rim Hike

- Altitude and Temperature Change
- Extreme Environment
- Physical Strain
- 14.3 miles, 6,000 feet to the bottom
- 9.6 miles, 4,500 feet back to the South Rim


Figure 1. Signage at Bright Angel Trailhead, October 2015.

Source: https://www.nps.gov/grca/index.htm

Three tiers for R2R WATCH

R2R WATCH Team

Rob Abbott, PhD (Org 1463), Computer Scientist

Clifford Anderson-Bergman, PhD (Org 8962), Statistician

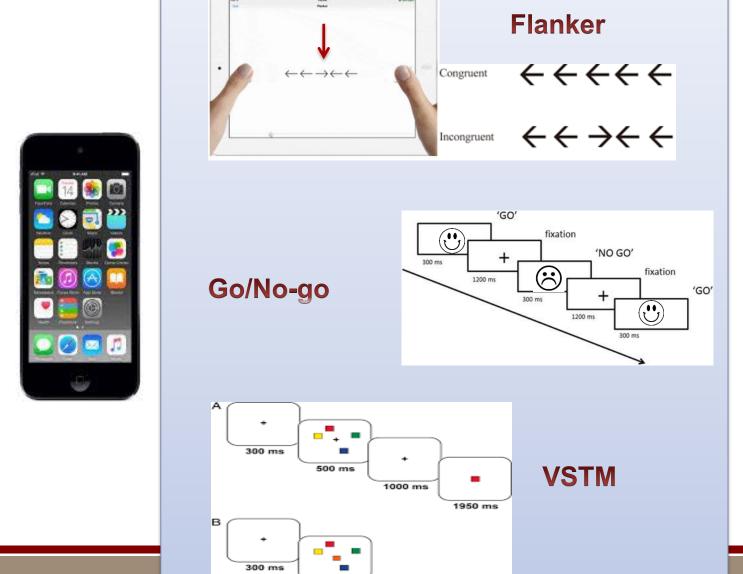
Glory Emmanuel Aviña, PhD MBA (Org 8962), Principal Investigator

Kristin Divis, PhD (Org 1463), Cognitive Psychologist

Cathy Branda, PhD (Org 8920), Sr Manager, SNL Program Manager

Patricia Benguerel (Org 8532), Project Controller

Victoria Newton (Org 10653), Project Support



Collecting Physiological and Cognitive Data

Package	Cognitve Tests	GPS	Elevation	Heart rate (ECG)	Heart rate (Wrist)	Heart rate (Forehead)	Cadence (Wrist)	Cadence (Torso)	Temperature (Ambient)	Temperature (Direct Sun)	Temperature (Skin)	Humidity	Total	Qty
Advanced 1	iPod Touch 6	Fenix 3 HR	Fenix 3 HR	Wahoo TickrX	Fenix 3 HR	LifeBeam SmartHat	Fenix 3 HR	Wahoo TickrX	SensorPush	SensorPush	Tempe	SensorPush	\$1,115	10
Advanced 2	iPod Touch 6	Spartan Ultra	Spartan Ultra	Smart Sensor	(None)	LifeBeam SmartHat	Spartan Ultra	(None)	SensorPush	SensorPush	(None)	SensorPush	\$1,165	10
Basic 1	iPod Touch 6	Vivoactive HR	Vivoactive HR	(None)	Vivoactive HR	(None)	Vivoactive HR	(None)	SensorPush	(None)	(None)	SensorPush	\$515	35
Basic 2	iPod Touch 6	eTrex 10 + 2AA	(None - 'floors')	(None)	Fitbit Charge HR	(None)	Fitbit Charge HR	(None)	SensorPush	(None)	(None)	SensorPush	\$485	15

Collecting Physiological and Cognitive Data

Brain Baseline

Participants

Voluntary hikers already doing Rim-to-Rim hike

Military Personnel

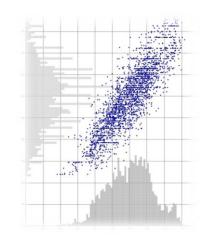

Figure 3a. Experienced hikers check-in to Rim-to-Rim study between 2 – 4am.

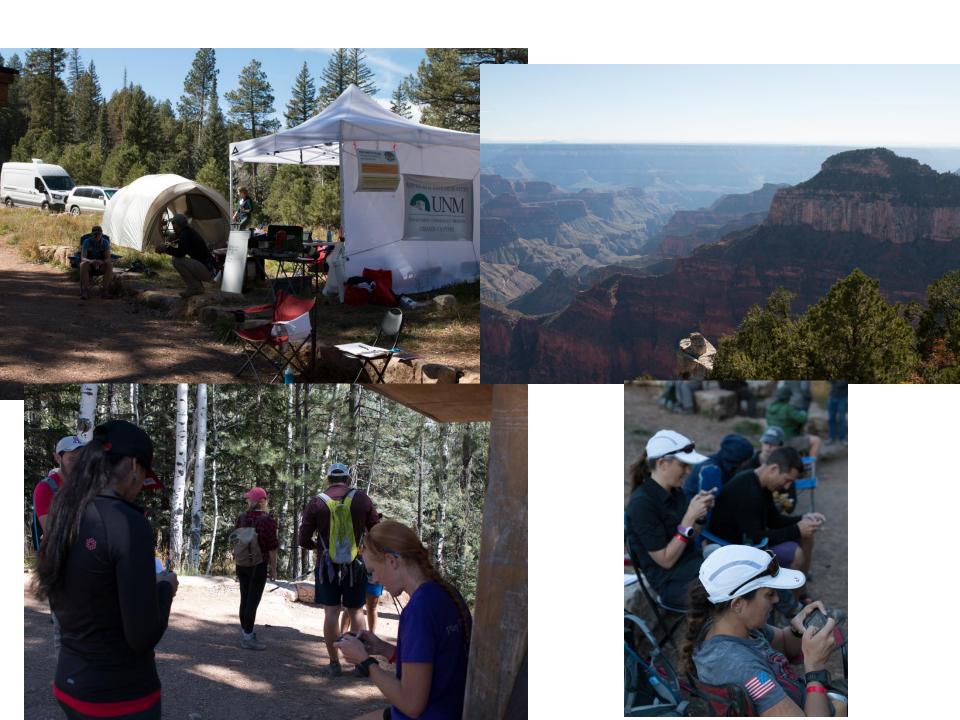
Figure 3b. Due to the length of the Rim-to-Rim hike, hikers hike down and up the canyon in the dark with headlamps.

Data

- Data Extraction
- Device Security
- Data Analysis
- Data Interpretation

- Presentation of Findings
 - Recommendations on Wearables
 - Statistical Findings

OCTOBER 2016 DATA COLLECTION


75 wearable devices packages 300+ wearable devices

Sandia National Laboratories Team

The University of New Mexico Health Sciences Center

Differences between Military & Civilians

Military Personnel

Civilian

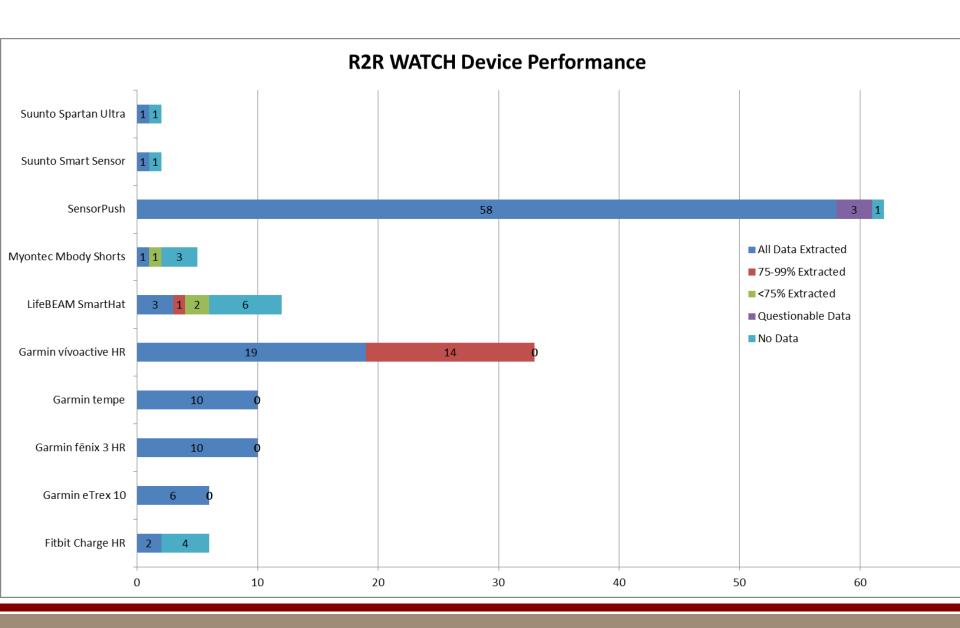
Count	12 hikers	38 hikers
Gender	50% male	50% male
Age	35.9 years (stdev = 6.3)	46.3 years (stdev = 11.9)
Elevation (residence)†	283.8 ft (stdev = 209.0)	1542.8 ft (stdev = 2226.4)
Weight*	169.4 lb (stdev = 29.4)	163.3 lb (stdev = 23.6)
SpO2*	95.0% (stdev = 3.4)	95.5% (stdev = 3.1)
Heart rate (standing)*	84.6 bpm (stdev = 9.0)	79.4 bpm (stdev = 13.5)
Heart rate (sitting)*	81.9 bpm (stdev = 8.9)	77.4 bpm (stdev = 13.4)
Sleep	5.9 hrs (stdev = 1.1)	5.9 hrs (stdev = 1.4)
Longest distance	33.4 mi (stdev = 23.2)	40.3 mi (stdev = 26.7)
Prev. completed R2R	8% yes	39% yes

[†]Elevation along the R2R trail ranges from 2400 to 8200 ft

^{*}Prior to beginning hike

Military vs Civilian: Cognitive Differences

First Test		Military	Civilian
Go/No-go:	Time	527 ms (sd = 66)	554 ms (sd = 87)
	Accuracy	0.964 (sd = 0.061)	0.957 (sd = 0.070)
Flanker:	Time	594 ms (sd = 109)	592 ms (sd = 98)
	Accuracy	0.935 (sd = 0.140)	0.943 (sd = 0.107)
VSTM:	Time	1012 ms (sd = 206)	1139 ms (sd = 309)
	Accuracy	0.779 (sd = 0.082)	0.732 (sd = 0.093)
Last Test		Military	Civilian


Military performed better in 10 / 12 measures

Last	Test		Military	Civilian	e
Go/	No-go:	Time	488 ms (sd = 92)	530 ms (sd = 71)	C
		Accuracy	0.940 (sd = 0.060)	0.949 (0.070)	fa
Flar	ıker:	Time	496 ms (sd = 64)	559 ms (sd = 71)	le
		Accuracy	0.975 (sd = 0.026)	0.956 (sd = 0.098)	
VST	M:	Time	978 ms (sd = 411)	1088 (sd = 343)	
		Accuracy	0.779 (sd = 0.082)	0.702 (sd = 0.106)	

Military's
advantage
increased
in later trials,
especially with
response time:
Could be less
fatigue or better
learning

Overall Device Performance

- Goal of Model 1: validate that BrainBaseline captures fatigue effect
- Take advantage of structure of experiment for robust measures
 - Know subjects start experiencing light fatigue hiking down the Canyon, heavy fatigue hiking back up the Canyon
 - Capture this in two variables: Percent descended, percent ascended
- Important to validate, but results do not extend to a non-controlled environment

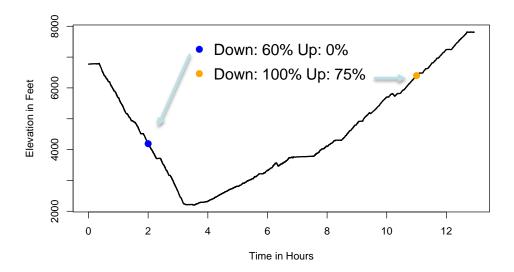


Table 2.

Estimated Effects on Response Time						
	Estimate	95% CI	P value			
Flanker-congruent: Proportion up	72.1	(23.7, 120.6)	0.004			
Flanker-congruent: Proportion down	-8.0	(-69.1, 53.1)	0.797			
Flanker-incongruent: Proportion up	49.8	(-8.2, 107.9)	0.093			
Flanker-incongruent: Proportion down	6.5	(-67.7, 80.8)	0.863			
Go/no-go: Proportion up	27.7	(-23.6, 78.9)	0.290			
Go/no-go: Proportion down	32.9	(-22.7, 88.5)	0.247			
VSTM: Proportion up	206.8	(10.8, 402.9)	0.039			
VSTM: Proportion down	225.2	(-33, 483.4)	0.087			

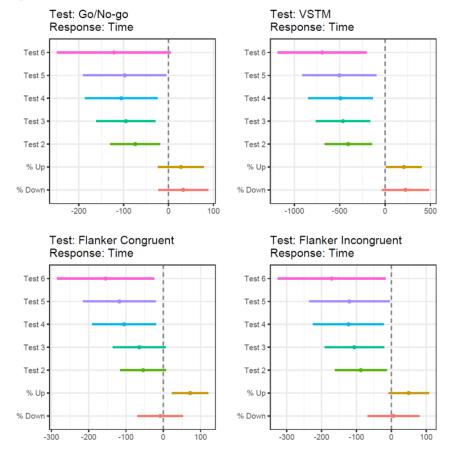
Response time effects for the cognitive battery as a function of proportion up and down the canyon.

Table 3.

Estimated Effects on Accuracy						
	Estimate	95% CI	P value			
Flanker: Proportion up	-0.003	(-0.052, 0.046)	0.9102			
Flanker: Proportion down	-0.002	(-0.067, 0.063)	0.9562			
Go/no-go: Proportion up	-0.047	(-0.088, -0.007)	0.0229			
Go/no-go: Proportion down	-0.030	(-0.074, 0.015)	0.1878			
VSTM: Proportion up	-0.124	(-0.184, -0.064)	0.0001			
VSTM: Proportion down	-0.098	(-0.178, -0.019)	0.0155			

Accuracy effects for the cognitive battery as a function of proportion up and down the canyon.

Hypotheses


- Fatigue would have a positive effect on response time (increase)
- Fatigue would have a negative effect on accuracy (decrease)
- In 13/14 estimated effects, this trend was observed (p-value from sign test: 0.0009).
- Brain Baseline scores decline as fatigue increases

Brainbaseline-Fatigue Connection

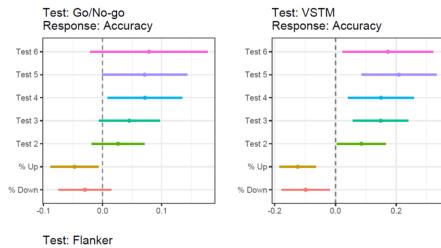
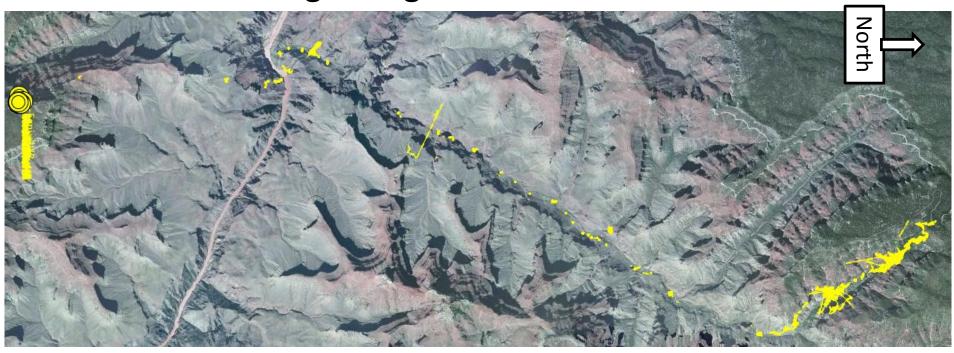


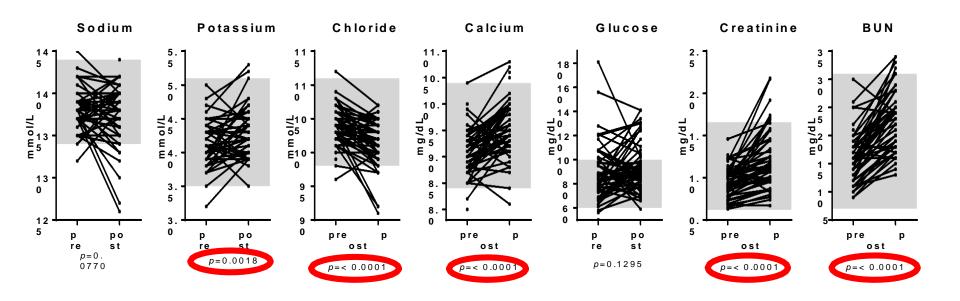

Figure 2.

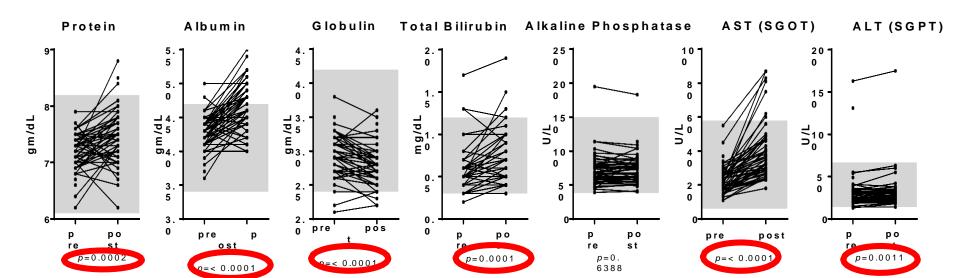
Response time effects for the cognitive battery as a function of proportion up and down the canyon, including learning effects.

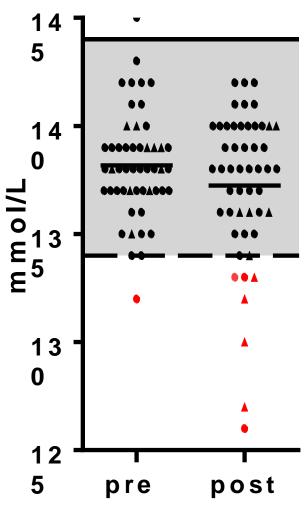
Figure 3.



Accuracy effects for the cognitive battery as a function of proportion up and down the canyon, including learning effects.


Hypothesis: heart rate responds more quickly to changes in workload as fatigue sets in


Detecting changes in workload - Breaks


- This is everywhere that somebody's pedometer (wrist-based accelerometer) read 0 for at least 80% of samples in any 5-minute period
- GPS was not used to detect breaks, only indicate where they were at the time
- This appears to be a reasonably promising, if crude, way to detect changes in workload
- But maybe it would be easier to just get a sample of more controlled data to start with

"Complete Metabolic Panel" – Standard Clinical Laboratory tests used commonly in most patients who receive blood tests. n = 51 matched samples, 60 total subjects p values from paired T-test between pre and post crossing samples. Red circles highlight significant differences.

Sodium

Slightly elevated levels are less clinically significant

Sudden drops in sodium to these levels (over hours) can lead to seizures and death Sodium levels did not change significantly as a population. This is in part because half of the subjects sodium concentrations increased, while the other half decreased. This is has important implications as decreases in sodium can lead to catastrophic outcomes including seizure, coma, and death. In less severe cases it can lead to nausea and declines in performance.

Previous literature implicates human behavioral factors like amounts of food and water ingestion as significant predictors. Molecular mechanisms through Arginine Vasopressin have also been implicated.

$$p = 0.0770$$

Funding for Wearables At The Canyon for Health is provided by the Defense Threat Reduction Agency (CB10359).

THANK YOU

Glory Emmanuel Aviña,

Principle Investigator 925.294.2478

gremman@sandia.gov

Catherine Branda,

Program Manager 925.294.6833

cbranda@sandia.gov

ACKNOWLEDGEMENTS

Funding for Wearables At The Canyon for Health is provided by the Defense Threat Reduction Agency (CB10359).