How Human Systems Integration (HSI) Contributes to System Architecture

National Defense Industrial Association Human Systems Conference

March 7 – 8, 2017

Homeland Security

Science and Technology

Mark S. Adams Janae Lockett-Reynolds, Ph. D. Thomas B. Malone, Ph. D.

Office of Systems Engineering

Introduction

- Architecture
- Framework
- Artifact

Why an Architecture?

- Complex
 Problems
- Dynamic World
- Authoritative
 Documentation
- Many Developers

- Many Types of Users
- "As Is" and "To Be"
- Detect Gaps and Overlaps

HSI In Architecture NATO Human View Models

Science and Technology

Federal Enterprise Architecture

Science and Technology

Design And Development

Automate all system functions without any consideration for human performance requirements (essentially attempting to design the human completely out of the system)

A Train Wreck

The Systems Engineering Approach

- 1. ID system functions, then requirements for performance
- 2. Decompose functions
- 3. Continue until next level requires means to perform
- 4. Allocate functions (human/automation/combination)

Requirements

Action	What actions must the system execute
Decision	What decisions must be made
Information	What the system must know
Resource	What support must the system have

Function Allocation Process

Function Allocation

- 1. Identify human performance mandatory; automation prescribed
- 2. Identify human roles in all functions, even automated/semi-automated
- 3. Identify requirements for human roles
- 4. Identify requirements for human-automation interaction

Allocation Decision Criteria

- Systems Engineering: tech risks, maturity, feasibility, performance
- ✓ <u>Operations</u>: command authority, mission risks, situation awareness, operational constraints
- ✓<u>HSI</u>: human capability and workload, level of uncertainty, safety

Science and Technology

Architecture at the Task Level

Task Sequences business model workflow

Task Relationships task network simulation

Task Performance Requirements drive system design

HSI Within The Architecture SUMMARY

Just as a system is composed of people, hardware, and software...

System performance is composed of human performance, machine performance, and interactions.

HSI Within The Architecture SUMMARY

Specifying the roles of automation and humans in system performance is an important step in defining the architecture

HSI Within The Architecture SUMMARY

A Major Element Of Systems Architecture Is Performance: Performance of Humans, Performance of Automation, and the Interaction of the Two

Homeland Security

Science and Technology

Science and Technology