

The 21st Century Battery Revolution

Why the United States Cannot Afford to Lose the Battery Race

James J. Greenberger May 2, 2017

NAATBatt International

- Founded in 2008
- Not-for-Profit Trade Association
- Mission: To accelerate the development and commercialization of advanced battery technology across industry sectors

NAATBatt International

Batteries Have a History of Failure

- Baghdad Battery (Parthian Battery) @ 0 A.D.
- Alessandro Volta demonstrates the Voltaic Pile in 1798
- Gaston Plante invents the lead acid battery in 1859 – most common battery used today

Battery Technology Has Had Its Skeptics

"The storage battery is, in my opinion, a catchpenny, a sensation, a mechanism for swindling the public by stock companies. The storage battery is one of those peculiar things which appeals to the imagination, and no more perfect thing could be desired by stock swindlers than that very selfsame thing. ... Just as soon as a man gets working on the secondary battery it brings out his latent capacity for lying."

-- Thomas Edison, The Electrician (London) Feb. 17, 1883

The Battery Revolution of the 1980's

- Dr. Masahiko Oshitani of GS Yuasa Company develops improved NiMH battery, roughly doubling the energy-density of lead acid batteries. First consumer grade cell sold in 1989
- Rechargeable Li-ion battery developed by Dr. Stan Whittingham at Exxon in early 1980s
- Dr. John Goodenough of Texas developed the lithium cobalt chemistry and later the lithium iron phosphate chemistry
- Sony sells the first commercial lithium-ion battery in 1991, roughly doubling the energy density of NiMH

Dr. Masahiko Oshitani

Dr. Stan Whittingham

Dr. John Goodenough

The Sad Fate of Dr. Oshitani

HEV, P-HEV & EV market forecasts up to 2025

LIB penetration in HEV 2010-2025

ENAATBAT

A Lot of Progress in 25 Years

Advanced Batteries Enable the Technologies of the 21st Century

Mobility Revolution

Source: Morgan Stanley Research.

Urbanization Underlies Mobility Revolution

Source: Kleiner Perkins Caufield & Byers

Vehicles Require More Electric "Stuff"

- Electrical power supply systems...
 - Enable electrical features
 - Enable fuel economy functions
 - Are highly critical for customer satisfaction and safety

2020+:

- Light
- Starter
- ABS/ESP
- Power windows
- Engine ECU
- Customer ports
- EPS
- Driver assist
- Heated/cooled features
- Start/Stop operation
- e-Booster
- Fully autonomous vehicle
- Active chassis systems
- • •

Decarbonization Policy is Real

Source: Roland Berger 2015

Rising Cost of ICE vs. Falling Battery Costs

F

R

N

A

T

1

0

Source: Morgan Stanley Research

xEV Market Projections are Robust

Source: International Energy Agency 2016

Experience May Support Optimism

Source: International Energy Agency, 2016

Electricity Grid Revolution

The Electricity Grid is Aging

...and Inefficient

	Generation	Transmission	Distribution
# in U.S.	17,350 plants	164,000 miles	3 million miles
Utilization	47%	43%	34%
Projected spend 2010-2030	\$505B	\$298B	\$582B
Projected underutilization	~\$1.4 TRILLION of future US infrastructure will be underutilized without storage		

Energy storage unlocks value in existing assets by increasing low rates of utilization

Sources: "Electric Power System Asset Optimization." NETL, March 2011; "The Power of Five Percent." The Brattle Group, May 2007

The New, Decentralized, Bidirectional Grid

Electricity Storage is Key to the New Grid Design

Energy Storage For Renewables Integration New Installations, World Markets: 2014-2023

(Source: Navigant Research)

The Data Revolution (Internet of Things)

The IoT market by 2020

- The Internet of Things estimated market value: \$8.89 trillion

- Wearables estimated market value: \$8.3 billion

- If "Wearables" were removed from the estimated IoT value, the IoT overall value would STILL be \$8.89 trillion

The sizeable IoT market opportunity is in software, security and infrastructure

Powering the Internet of Things

MARKET FORECAST FOR THIN-FILM AND PRINTED BATTERIES

©2014 NanoMarkets, LC

www.nanomarkets.net

The Military Battery Revolution

Compression of Military and Civilian Technology

Potential Breakthroughs in Battery Technology 2017-2050

- Lithium Ion with Silicon based anode
- High Voltage Li-lon (4.4-4.7V)
- Li-Ion Solid Electrolyte (Li-ion, Li-metal)
- Lithium Sulfur
- Lithium Air

Silicon Anodes / High Voltage

 Anodes are carbon based – Si stores 10X more energy than Li carbon (250-300 Wh/Kg).

300% volume expansion upon lithiation

 18650 3.5-4Ah cells projected by American Lithium Energy, Panasonic, LG, Samsung and Sony (2015-2018).

Panasonic NCR18650GA

Solid Electrolyte Pouch Cells

Developers: Toyota Apple Samsung Imprint Prologium And 20 more...

- Higher energy density than Li-lon (When use Li-Metal anode)
- Safety no flammable electrolyte, No leaks (Ceramic, Dry Polymer)
- less Lithium dendrite formation
- Can fit any casing shape (soft packaging)
- Cells can be made as thin as 0.1 mm or about one-tenth the thickness of the thinnest prismatic liquid Li-ion cells
- Low potentially manufacturing cost
- Excellent cycling stability
- Excellent shelf life

Source: Shmuel De-Leon Energy Ltd., 2017

Lithium Sulfur

- High theoretical capacity, energy and power density Expected for practical 300 to 600 Wh/kg
- Sulfur cost is cheap and environmentally safe
- Li-S can provide the break through we are waiting for but farther development needed
- <u>Developers:</u> Sion power (U.S.A.), Eagle-Picher (USA), PulyPlus (U.S.A.), Oxis Energy (U.K.) - <u>Oxis is leading with a 310 Wh/kg pre-</u> production

	Li-S	Li-lon
Wh/Kg	2500	580
Wh/L	2660	1810

Source: Shmuel De-Leon Energy Ltd., 2017

Metal Air batteries - Lithium Air

- Metal Air batteries provide higher energy densities
 - Aluminum Air
 - Zinc Air
 - Silicon Air
 - Lithium Air
- But these metal air batteries up till now have been primary batteries (non rechargeable or only mechanically rechargeable)
- Academics and Industry alike are working on making the lithium air battery rechargeable.

Asian Companies Dominate Li-Ion Mfg.

Why Does Asia Dominate?

- Lower costs
- Incumbency
- Government subsidy
- U.S. indifference

Modeled Li-Ion Cell Mfg. Costs per Region

Source: Clean Energy Analysis Manufacturing Center (CEMAC) 2016

Play to Your Strength

Thank You

James J. Greenberger Executive Director NAATBatt International (312) 588-0477 jgreenberger@naatbatt.org

