#### Development of a Safe, Lightweight 28V/25Ah Li-ion Battery for Navy Aircraft F/A-18E/F Super Hornet

#### By

#### Dr. Trung Hung Nguyen of EIC Labs., Dr. Ahmad Pesaran and Dr. Chuanbo Yong of NREL

Chris Derby and Mark. Hurley, of NAVAIR, Terry Meriweather of NSWC Crane,

**Dr. Venkatesan Manivannan and Chuck Singer of NAVAIR** 

**Presented** at

Joint Service Power Expo, May 2-3, 2017, Virginia Beach, VA



### **Development of the F/A-18E/F Aircraft Main Battery**

- 1. Battery is an important component of the aircraft DC power system
- 2. Battery can be used aboard the aircraft for auxiliary power unit starting, canopy operation, refueling, lighting, emergency power, flight control backup
- 3. EIC is working with NAVAIR to develop safe 28V/25Ah Li-Ion battery as a drop in replacement for current SLAB used on the F/A-18E/F Super Hornet aircraft
- 4. The F/A-18E/F aircraft has two 150-amp transformer-rectifiers (TRs), one 50amp battery charger and one 15.0 Ah sealed, lead-acid (SLA) aircraft battery
- Battery would have to survive a random vibration level of 7.7 Grms over a frequency range of 10 - 2000 Hz and sinusoidal vibration levels of up to 10.0 Gs over a frequency range of 50 - 2000 Hz



### **Overview of Li-Ion battery Safety**

- Li-Ion battery contains no metallic lithium in its elemental form
- Have twice the energy of a nickel-based battery and four-times that of lead acid
- Low maintenance system with no memory effect
- However, under abuse operating conditions, Li-Ion cells can generate large amount heat that could possibly lead to thermal runaway



## **NREL Thermal Runaway - Background**



"Thermal Abuse Modeling of Li-Ion Cells and Propagation in Modules", *Gi-Heon Kim, Ahmad Pesaran, and Kandler Smith at NREL*, presented at 4th International Symposium on Large Lithium-Ion Battery Technology and Application (May 2008)

\_aboratories

# **Approaches in Mitigating Thermal Runaway Reactions**

- Safety is the primary criterion in EIC Li-Ion battery pack's design and architecture
- EIC approaches to develop Safe Li-Ion Battery System:
  - 1. Select highly stable cathode chemistry to minimize heat generation
  - 2. Modular battery design Architecture
  - 3. Design and integrate electronic circuits to control the safe operation of the battery



### **Heat Generation of Cathode Materials**





## **Battery Management System (BMS)**

- Lithium-ion system is safe, providing certain precautions are met when charging/discharging
- Battery has to operate within operating voltage limits
- BMS continually monitors voltage, currents, and temperatures within the pack
- BMS protects the battery against adverse safety conditions such as overcharge, over-discharge, short circuit, and high temperature



## **EIC Modular Battery Design Architecture**

- 1. Modular approach in designing battery system
- 2. Each module has its own independent BMS circuit
- 3. Batteries are designed by connecting modules with BMS in parallel
- 4. Battery Health Monitoring (BHM) unit connects to each individual battery BMS and receives status information from each unit.



# 1<sup>st</sup> Generation of Safer Li-Ion Battery Design for NAVAIR Aircraft Platform

#### Current "Safer Li-Ion Battery" relies on

- 1. Safe LFP cathode chemistry
- 2. Small 2.5Ah A123 cylindrical26650 cells
- 3. Modular battery design using 10Ah module with 2.5Ah cells in 4P8S configuration with Flame-Retardant foam in between cells
- 4. Thermal modeling to evaluate, when one individual cell develops thermal instability, if heat propagation to neighboring cells can trigger thermal runaway



# **NREL Thermal Modeling of 4P8S Battery Module**



.aboratories

#### A123 2.5 Ah ANR26650 M1 cylindrical cell

| Capacity (Ah)                            | 2.4           |
|------------------------------------------|---------------|
| Weight (g)                               | 76            |
| Density (kg/m <sup>3</sup> )             | 2264          |
| *Cp (J/kgK)                              | 855           |
| *k (w/mK) (Radial, Tangential and Axial) | (0.8, 27, 27) |
|                                          |               |

Thermal properties of A123 M1 cell

**Case** 1: One cell goes into thermal instability with cell temperature at 600°C

**Case 2**: Cathode-anode type short-circuit due to separator breakdown in one cell

**Case 3**: One cell develops internal short. The three neighboring cells dump circulating current of about 400A to the shorted cell

# **Case 1 Thermal Modeling Results**

- In this study, initial temp of the cells except cell 24 was 25 °C. Thermal event occurred within cell 24 and initial temperature of cell 24 is 600 °C.
- 2. Thermal modeling results show that other cells remain below 120 <sup>o</sup>C and thus safe
- 3. This study indicates a single external cell failure in the 4P8S module most likely will not



aboratories.



# **Case 2 Thermal Modeling Results of 4P8S Module**

- 1. Cathode-anode type short circuit occurs in cell 24 of the 4P8S module; Shortcircuit growth due to separator breakdown.
- 2. Cell 24, went into full thermal runaway in about 2 minutes with max temp of 600°C.
- 3. Results show maximum temperatures of other cells were less than 140 °C

500

1000

4. Study indicates a single external cell

failur

will n

even

aboratories.

160

140

120

Temperature (°C)

60

40

20 0



# **Case 3 Thermal Modeling Results of 4P8S Module**

- Cell 24 in the 4P group develops an internal short. The circulating current from the other 3 into the short cell is about 400 A
- Hot spot in cell 24 where short-circuit locates was more than 1000 <sup>o</sup>C after about 1 second due to the circulating current joule/resistive heating
- 3. Compared with internal temperature rise, external temperature rise was relatively

aboratories.







Joint Service Power Expo, May 2-3, 2017

### EIC 28V/25Ah Li-Ion Battery Case Design

- 1. Battery case designed to withstand the high altitude flight of the F-18 aircraft
- 2. Finite element analysis (FEA) used to ensure the battery works at 50,000 feet
- 3. Prototype F-18 battery submitted to high altitude storage test at 50,000 feet inside walk-in altitude chamber for 30 minutes to confirm battery integrity and FEA results



## EIC 28V/25Ah Li-Ion Battery Shock and Vibe Test



EIC 28V/25Ah battery with State of Charge LCD display and RS-485 battery Diagnostic Output



EIC 28V/25Ah battery has passed 1- EMI MIL-STD 461F 2- Aircraft mechanical Shock and Vibration tests 3- Aircraft Electric Power Characteristics MIL-STD 704F



## EIC 28V/25Ah Battery Performance Testing at NAVAIR

| BASELINE CAPACITY CHECK (1C-RATE 26A) TRU Interoperability | Cha (Ah) | Dis (Ah) | Pass     |
|------------------------------------------------------------|----------|----------|----------|
| Discharge 25A to 20V (BATT2)                               |          | 25.33    | ✓        |
| 50AMP TRU-2 Re-Charge                                      | 25.44    |          | ✓        |
| Discharge 25A to 20V (BATT2)                               |          | 25.3     | ✓        |
| 50AMP TRU-2 Re-Charge                                      | 25.36    |          | ✓        |
| CAPACITY DISCHARGE AT Various C-Rate ( -2 TRU )            |          |          |          |
| Discharge 10A to 20V                                       |          | 25.2     | ✓        |
| 50AMP TRU-5 Re-Charge                                      | 25.32    |          | ✓        |
| Discharge 20A to 20V                                       |          | 25.02    | ✓        |
| 50AMP TRU-5 Re-Charge                                      | 25.13    |          | <b>~</b> |
| Discharge 30A to 20V                                       |          | 25.06    | ✓        |
| 50AMP TRU-5 Re-Charge                                      | 25.15    |          | ✓        |
| Discharge 40A to 20V                                       |          | 25.02    | ✓        |
| 50AMP TRU-5 Re-Charge                                      | 25.12    |          | ✓        |
| Discharge 50A to 20V                                       |          | 25.29    | ✓        |
| 50AMP TRU-5 Re-Charge                                      | 25.33    |          | ✓        |
| MAX CAP Discharge TEST                                     |          |          |          |
| DC PS CHG 28.9V 50A CL                                     | 0.03     |          | ✓        |
| Discharge 25A to 20V                                       |          | 25.4     | ✓        |
| 50AMP TRU-5 Re-Charge                                      | 25.48    |          | ✓        |
| AIRCRAFT TURNAROUND LOADS                                  |          |          |          |
| AIRCRAFT TURNAROUND LOADS DIS *AMBIENT*                    |          | 4.42     | ✓        |
| 25A DIS to 20V to ID remaining Capacity                    |          | 20.75    | ✓        |
| 50AMP TRU-5 Re-Charge                                      | 25.18    |          | ✓        |
| AIRCRAFT START-UP LOADS                                    |          |          |          |
| AIRCRAFT START-UP LOADS Battery *AMBIENT*                  |          | 3.1      | ✓        |
| 25A DIS to 20V to ID remaining Capacity                    |          | 22.35    | ✓        |
| 28.5V 50A CL CHG -5 TRU                                    | 25.56    |          | ✓        |
| AIRCRAFT EMERGENCY LOADS                                   |          |          |          |
| 71A Discharge for 4.0 Minutes                              |          | 4.76     | ✓        |
| 25A DIS to 20V to ID remaining Capacity                    |          |          |          |
| 28.5V 50A CL CHG (DC PS)                                   | 25.02    |          | ✓        |

E

Joint Service Power Expo, May 2-3, 2017

## **Thank You**

#### Acknowledgement

### Funding from NAVAIR SBIR/STTR Program and TPOC: Dr. Venkatesan Manivannan

