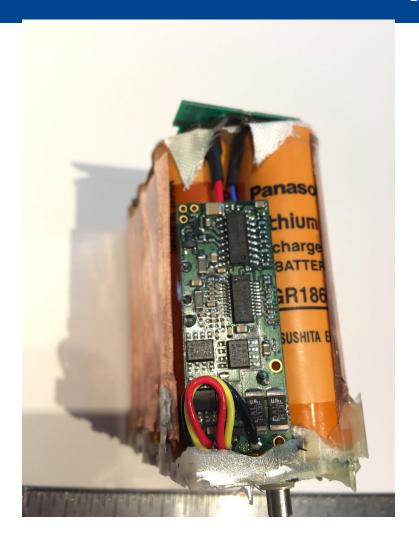
Manufacturing Improvements for DLA Lithium Batteries


TurnAround Factor


Overview

- DLA & TurnAround Factor SBIR Project
- Goal: improvements to battery supply chain:
 - o PRC-148
 - o PRC-152
 - PRC-154
 - o BB-2590
 - PLM-4 (USAF test unit)

Existing Batteries

Where We Are Today

18650 Cells in the Batteries

Battery	BB-2590 (BT-70791CG)	Thales AN/PRC-148	Harris AN/PRC-152
Cell Manufacturer	Panasonic	Panasonic	Panasonic
Country of Origin	China	Japan	Japan
Cell Model	NCR18650B	CGR-18650HG	CGR-18650DA
Cell Quantity	24	6	6
Cell Retail Cost	\$3.20 ea. (\$76.77/pack)	~2.00 ea. (\$12/pack)	~3.00 ea. (\$18/pack)
Pack Price Today:	\$142.24	\$197.24	\$233.70

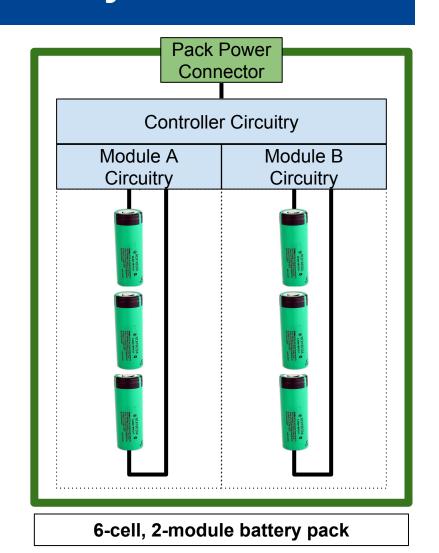
Key Observations

- The only part of the packs failing are the cells
- All batteries under study use voltage-compatible Lithium-lon cells in various configurations
- All the cells themselves are COTS and fairly inexpensive relative to the cost of the NSN

Tesla Model S Battery with 8,600 Panasonic 18650 cells

Key Observations

- All use Texas Instruments "Gas Gauge" ICs (BQ2050, BQ20Z655, BQ20862)
- External Comms: SMBus, DQ, HDQ
- All have a ruggedized military case
- Only the cells are "expended"
- Only the cells are shelf life limited

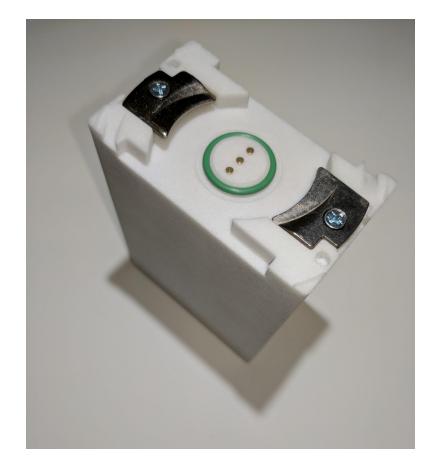

Teardown Key Takeaways

- 1. The **cells** cause the majority **inventory management problems**
 - Shelf-life limits and backorders during operations
- 2. Cells are a COTS part with strong industrial base
 - Mitigates surge issues.
- Cells and packs have different supply chain management characteristics

Batteries Concept

Standardized Modular Battery Packs

Key BenefitsBattery Supply Chain


- Creates a non-shelf life military specific case
 separate from the shelf-life limited COTS cells
- Dramatically Increased Surge Capacity
 - Allows vendor-managed, government-owned stock of military-specific cases
 - Simplified COTS cell insertion process as final step into government-owned stock of cases
- Competitive Standards allow reuse of packs across a wide range of future weapons systems

Key BenefitsReduced Lifecycle Cost

- Standardized packs allow for competition (esp. PRC-148/152/154, future systems)
- Recurring Costs
 - Simplified stock management
 - Disposal/retrograde savings
 - Long-term: Stock or Pre-position packs without cells
 - Long-term: Streamline cell technology insertion

Safeguards & Protections

- Equal or greater protection than existing packs
- All batteries to use modern safety designs
 - Monitor and Balance EVERY cell
 - E.g., -148, -152 don't monitor each cell
 - Future capability to further improve charge safety
- Additional safety monitoring/protection circuitry to enable simplified COTS cell insertion process

- Demonstrates concept feasibility, safety features
- Compatible with existing chargers
- Establishes baselines for standards

First Generation PRC-148 Prototype

Next Steps, Discussion

- Socialize the concept with Army, USMC, SOCOM
- Establish Service SME lines of communication — lay groundwork for eventual pilot testing and adoption
- Refine based on customer input
- Prototype additional packs
 - PRC-154, BB-2590, PLM-4, etc.
- Iterate draft standards