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Agenda

• MIL-STD-882E Requirements for Software Safety

• DoD Guidance for Software Safety

• Software System Safety Hazard Analysis

• Functional Hazard Analysis (FHA) for Software

• In-Depth Safety-Specific Testing

• Requirements Analysis

• Architecture Analysis

• Design Analysis

• Code Analysis

• Wrap Up
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Learning Objectives

Gain an understanding of: 

• A framework for performing and documenting 

MIL-STD-882E-required software safety Level of 

Rigor (LoR)

NOTE: Blue font is used in these slides to highlight significant terms 

or statements.
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Learning Objectives

Gain an understanding of :

• A framework for performing and documenting 

MIL-STD-882E-required software safety Level of 

Rigor (LoR)

NOTE: This framework will NOT be a detailed step-by-step process 

of exactly how to perform each analysis on every system
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Learning Objectives

Gain an understanding of:

• A framework for performing and documenting 

MIL-STD-882E-required software safety Level of 

Rigor (LoR)

• How to focus analysis of software requirements 

and architecture on the command and control of 

Safety-Significant Functions
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Learning Objectives

Gain an understanding of:

• A framework for performing and documenting 

MIL-STD-882E-required software safety Level of 

Rigor (LoR)

• How to focus analysis of software requirements 

and architecture on the command and control of 

Safety-Significant Functions

• How to focus analyses of the design and code 

on Safety-Critical Decision Points
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Learning Objectives

Gain an understanding of:

• A framework for performing and documenting 

MIL-STD-882E-required software safety Level of 

Rigor (LoR)

• How to focus analysis of software requirements 

and architecture on the command and control of 

Safety-Significant Functions

• How to focus analyses of the design and code 

on Safety-Critical Decision Points

• How to derive the safety-specific test cases from 

the analysis
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MIL-STD-882E Requirements for 

Software Safety



9

Some MIL-STD-882E Terminology

Software. A combination of associated computer 

instructions and computer data that enable a computer 

to perform computational or control functions. Software 

includes computer programs, procedures, rules, and 

any associated documentation pertaining to the 

operation of a computer system. Software includes new 

development, complex programmable logic devices 

(firmware), NDI, COTS, GOTS, re-used, GFE, and 

Government-developed software used in the system.

Software system safety. The application of system 

safety principles to software.
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Software control category. An assignment of the degree 

of autonomy, command and control authority, and 

redundant fault tolerance of a software function in 

context with its system behavior.

SCC Software Control Category

SwCI Software Criticality Index

Level of rigor (LoR). A specification of the depth and 

breadth of software analysis and verification activities 

necessary to provide a sufficient level of confidence that 

a safety-critical or safety-related software function will 

perform as required.

Some MIL-STD-882E Terminology
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Safety-critical. A term applied to a condition, event, 

operation, process, or item whose mishap severity 

consequence is either Catastrophic or Critical (e.g., 

safety-critical function, safety-critical path, and safety-

critical component).

Safety-related. A term applied to a condition, event, 

operation, process, or item whose mishap severity 

consequence is either Marginal or Negligible.

Safety-significant. A term applied to a condition, event, 

operation, process, or item that is identified as either 

safety-critical or safety-related.

Some MIL-STD-882E Terminology



12

Safety-critical function (SCF). A function whose failure 

to operate or incorrect operation will directly result in a 

mishap of either Catastrophic or Critical severity.

SSF Safety-Significant Function

SSSF Safety-Significant Software Function

Some MIL-STD-882E Terminology
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[from MIL-STD-882E]

4.1 General. When this Standard is required in a 

solicitation or contract, but no specific tasks are 

included, only Sections 3 and 4 apply. The definitions in 

3.2 and all of Section 4 delineate the minimum 

mandatory definitions and requirements for an 

acceptable system safety effort for any DoD system.

. . .

4.3.2 Identify and document hazards. Hazards are 

identified through a systematic analysis process that 

includes system hardware and software, system 

interfaces (to include human interfaces) . . .

Requirements for Software Safety
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[from MIL-STD-882E]

4.4 Software contribution to system risk. The 

assessment of risk for software, and consequently 

software-controlled or software-intensive systems, 

cannot rely solely on the risk severity and probability. . . 

Therefore, another approach shall be used for the 

assessment of software’s contributions to system risk 

that considers the potential risk severity and the degree 

of control that software exercises over the hardware.

Requirements for Software Safety
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Severity Categories

Description
Severity 

Category
Mishap Result Criteria

Catastrophic 1
Could result in one or more of the following: death . . . 

or monetary loss equal to or exceeding $10M. 

Critical 2

Could result in one or more of the following: permanent 

partial disability, injuries or . . . monetary loss equal to 

or exceeding $1M but less than $10M. 

Marginal 3

Could result in one or more of the following: injury . . . 

resulting in one or more lost work day(s) . . . or 

monetary loss equal to or exceeding $100K but less 

than $1M. 

Negligible 4

Could result in one or more of the following: injury or 

occupational illness not resulting in a lost work day . .  

or monetary loss less than $100K. 
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Software Control Categories

Name Level Description

Autonomous

(AT)
1

Software functionality that exercises autonomous control 

authority . . . without the possibility of predetermined safe 

detection and intervention . . . 

Semi-

autonomous

(SAT)

2

Software functionality that exercises control . . . allowing time 

for predetermined safe detection and intervention by 

independent safety mechanisms . . . 

Redundant 

Fault Tolerant

(RFT)

3
Software functionality that issues commands . . . requiring a 

control entity to complete the command function . . . 

Influential

(INF)
4

Software generates information of a safety-related nature 

used to make decisions by the operator . . .

No Safety 

Impact

(NSI)

5

Software functionality that does not possess command or 

control authority . . . and does not provide safety-significant 

information . . .
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Software Safety Criticality Matrix

Severity

\\

Control

Catastrophic

(1)

Critical

(2)

Marginal

(3)

Negligible

(4)

1 (AT) SwCI 1 SwCI 1 SwCI 3 SwCI 4

2 (SAT) SwCI 1 SwCI 2 SwCI 3 SwCI 4

3 (RFT) SwCI 2 SwCI 3 SwCI 4 SwCI 4

4 (INF) SwCI 3 SwCI 4 SwCI 4 SwCI 4

5 (NSI) SwCI 5 SwCI 5 SwCI 5 SwCI 5

NOTE: The Influential (INF) SCC only applies to the generation of ‘safety-related’ information 

for the operator.
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SwCI Level of Rigor Tasks

SwCI 1 

Program shall perform analysis of requirements, 

architecture, design, and code; and conduct in-depth 

safety-specific testing.

SwCI 2

Program shall perform analysis of requirements, 

architecture, and design; and conduct in-depth safety-

specific testing.

SwCI 3
Program shall perform analysis of requirements and 

architecture; and conduct in-depth safety-specific testing.

SwCI 4 Program shall conduct safety-specific testing.

SwCI 5 
Once assessed by safety engineering as Not Safety, then 

no safety specific analysis or verification is required.

Software Safety Levels of Rigor
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Safety Risk for Failure to Perform LoR

RELATIONSHIP BETWEEN SwCI, RISK LEVEL, LoR TASKS, AND RISK

SwCI
Risk 

Level
Software LoR Tasks and Risk Assessment/Acceptance

1 High
If SwCI 1 LOR tasks are unspecified or incomplete, the 

contributions to system risk will be documented as HIGH . . .

2 Serious
If SwCI 2 LOR tasks are unspecified or incomplete, the 

contributions to system risk will be documented as SERIOUS . . .

3 Medium
If SwCI 3 LOR tasks are unspecified or incomplete, the 

contributions to system risk will be documented as MEDIUM . . .

4 Low
If SwCI 4 LOR tasks are unspecified or incomplete, the 

contributions to system risk will be documented as LOW . . .

5
Not 

Safety
No safety-specific analyses or testing is required.
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DoD Guidance for Software Safety
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[from Tasks 102 and 103 – System Safety Program Plan and Hazard 
Management Plan]

102/103.2.6 Hazard analysis.

. . .

i. Describe a systematic software system safety 
approach to:

. . .

(4) Identify and assign the Software Criticality 
Index (SwCI) for each safety-significant software 
function (SSSF) and its associated requirements.

MIL-STD-882E Guidance for 

Software Safety
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[from Task 208 – Functional Hazard Analysis]

208.2.1 . . .

g. An assessment of Software Control Category 

(SCC) for each Safety-significant Software Function 

(SSSF). Assign a Software Criticality Index (SwCI) 

for each SSSF mapped to the software design 

architecture.

MIL-STD-882E Guidance for 

Software Safety
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4.2.1.4  Defining and Using the Software Criticality 

Matrix

... It is through this prioritization that safety-significant 

code can receive the appropriate robustness and level 

of rigor over the lifecycle, while effectively managing the 

critical resources of the program. The most important 

aspect of the activity is that the software with the 

highest level of control over safety-significant hardware

must receive more attention or level of rigor than 

software with less safety risk potential. . .

JSSEH Guidance
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4.2.1.4  Defining and Using the Software Criticality Matrix

... It is through this prioritization that safety-significant 

code can receive the appropriate robustness and level of 

rigor over the lifecycle, while effectively managing the 

critical resources of the program. The most important 

aspect of the activity is that the software with the highest 

level of control over safety-significant hardware must 

receive more attention or level of rigor than software with 

less safety risk potential. . . This methodology helps 

prioritize and manage the critical resources of schedule, 

budget, and personnel associated with the development 

of the system.

JSSEH Guidance
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3.5. [LoR] Allocations to Safety-Significant Functions

The allocation of SSFs to specific [LoR] categories is 

essential, both to ensure the provision of rigor to the 

functions of highest safety criticality and to ensure the 

management of the critical resources necessary to 

implement that rigor. . . [T]he accomplishment of the 

subtasks … must be thoroughly documented within the 

artifacts of the safety analysis.

JS-SSA Software System Safety:
Implementation Process and Tasks Supporting MIL-STD-882E
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Software System Safety

Hazard Analysis – an Overview
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14-5.c. ... focus ... on hazard identification and 

mitigation of software causal factors, as opposed to 

error removal.

14-5.d. ... focus … on hazard and software causal 

factor identification and mitigation, as opposed to 

requirements perfection. [Software safety requirements 

should be based on mitigating software related 

hazards.]

NAVSEA SW020-AH-SAF-010, Section II, Weapon System Safety Guidelines Handbook 
System Safety Engineering and Management.

Where to Focus
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Software System Safety Hazard Analysis

Step 1 – Perform a software Functional Hazard Analysis 

(FHA)
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Step 1 – Perform a software Functional Hazard Analysis 

(FHA)

Step 2 – For each SSSF, perform (and document) all 

required tasks. 

For each analysis task, identify:

a. Potential Causal Factors

b. Potential (or actual) Mitigations 

c. Appropriate In-Depth Safety-Specific Testing for 

each CF and Mitigation

Software System Safety Hazard Analysis
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FHA for Software
[the beginning of a MIL-STD-882E software safety effort]
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Performing the Software FHA

Step 1 – Perform a software Functional Hazard Analysis 

(FHA)

a. Identify each Safety-Significant Function (SSF) that 

has been allocated to software (a SSSF).

b. Assess the level of software control of the function 

(the Software Control Category, or SCC).

c. Identify associated safety requirements or design 

constraints.

d. For highly critical (SwCI 1) SSSFs, identify potential 

system or software design redundancies to lower the 

SwCI (and required LoR).
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[from Task 208 – Functional Hazard Analysis]

208.1 Purpose . . . The initial FHA should be 

accomplished as early as possible in the Systems 

Engineering (SE) process to enable the engineer to . . .

• identify and document SCFs, SCIs, SRFs, and 

SRIs; 

• allocate and partition SCFs and SRFs in the 

software design architecture;

• and identify requirements and constraints to the 

design team.

MIL-STD-882E Guidance for FHA



33

A working definition for ‘Function’

The following is a working definition we will use for the 

term ”software function” (somewhat modeled after a 

mathematical function):

Given an input, or a set of related inputs, a software 

function produces one or more of the following 

outcomes:

• An externally observable system action;

• Externally observable digital information that can 

be used by a system operator or another software 

entity; or

• An internal change of digital state.

NOTE: The use of ‘external’ and ‘internal’ refers to the context of the 

software component(s).
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Naming a Function

Name each SSSF using a verb (performing an action) and 

a noun (object of the verb):

Examples:

• Arm the warhead

• Detonate the warhead

• Arm the booster

• Ignite the booster

• Release the missile

• Safe the booster

• Fire the weapon
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Choosing the ‘size’ of a SSSF

Use engineering judgement to choose the best ‘size’ of 

SSSFs for effective and efficient analysis and test - too 

high a level puts too much functionality all in the same 

“analysis bucket,” while too low a level breaks the 

analysis into too many pieces.

Some examples:

• Too high: Perform a Standard Missile engagement

• Too low: Close the K1 relay

• Good level: Arm the missile booster
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Functional Failure Types
[from NAVSEA SW020-AH-SAF-0010]

Function:

1 Fails to operate

2 Operates incorrectly/erroneously

3 Operates inadvertently

4 Operates at wrong time (early)

5 Operates at wrong time (late)

6 Unable to stop operation

7 Receives erroneous data

8 Sends erroneous data

9 Conflicting data or information
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Performing the Software FHA
-- Step 1a --

Step 1a. Identify each Safety-Significant Function (SSF) 

that has been allocated to software (a SSSF).

• Use the nine functional failure types to reason about 

the different ways the SSSF might fail with potential 

safety impact.

Ex. – Software-allocated missile release function 

fails to operate after missile ignition.

• Document the level of mishap severity that might 

result from the functional failure.

Note: For the weapon systems and combat systems we work with, 

this is most often CAT for software functional failures.
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Step 1b. Assess the level of software control of the 

function (the Software Control Category, or SCC).

To claim Semi-autonomous SCC, document how each 

SSSF failure is detected and what the independent 

safety mechanism that mitigates or controls the 

resulting hazard is.

To claim Redundant Fault Tolerant SCC, document 

what the redundancies are and how they mitigate or 

control each safety-significant failure type for the 

SSSF.

Performing the Software FHA
-- Step 1b --
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• Safe weapon SSSF fails to operate

• Arm warhead SSSF operates inadvertently

• Detonate warhead SSSF operates inadvertently

• Detonate warhead SSSF operates at wrong time (early)

• Detonate warhead SSSF operates at wrong time (late)

NOTE: The SSSF hazard severity or the software control category may 

vary for each functional failure type.

Examples of SSSF Functional Failures
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Step 1c. Identify associated safety requirements or design 

constraints.

The safety requirements and design constraints are 

mitigations for the safety-significant SSSF failures. 

Communicate these with the system and software 

engineers to ensure:

• They are included in the requirements and design 

(or coding standards) for the system

• There are appropriate tests (or inspections or 

analyses) included to validate the mitigations work 

to control identified safety-significant failures for 

the SSSF.

Performing the Software FHA
-- Step 1c --
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• The Launcher shall include an independent Canister 

Deluge sub-system to command Canister Flooding in 

case of Launcher Overtemperature or Missile 

Restrained Firing.

• The Launcher shall only process Missile Launch-

related commands if the Launcher has been placed 

in Tactical Mode by the Weapon Control System.

• The Launcher shall allow the selection of no more 

than two Missiles for Launch at the same time.

Examples of Safety Requirements and 

Design Constraints
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Step 1d. For highly critical, SwCI 1 SSSFs, identify 

potential system or software design redundancies that 

could lower the SwCI (and required LoR).

These fault tolerant redundancies are mitigations for 

safety-significant SSSF failures. Communicate these 

with the system and software engineers to ensure:

• They are included in the requirements and design 

for the system

Ex. – The Boeing 777 primary flight software is implemented in three 

similar computation channels (triple modular redundancy), each with 

three dis-similar ‘computation lanes’ (written in different programming 

languages).

Performing the Software FHA
-- Step 1d --
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FHA Advantages
[from NAVSEA SW020-AH-SAF-010 Section III] 

The following are significant advantages of the [FHA]:

a. Is easily and quickly performed.

b.Does not require considerable expertise.

c. Is relatively inexpensive, yet provides meaningful 

results.

d.Provides rigor for focusing on hazards associated 

with system functions.

e.Good tool for software safety analysis.
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FHA Disadvantages
[from NAVSEA SW020-AH-SAF-010 Section III] 

The following are disadvantages of the [FHA]:

a. . . . it might overlook other types of hazards, such as 

those dealing with hazardous energy sources or 

sneak circuit paths.

b.After a functional hazard is identified, further 

analysis is required to determine if the causal factors 

are possible.

c. Cannot completely replace the need for a PHA.
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In-Depth Safety-Specific Testing
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In-Depth Safety-Specific Testing

1.In-Depth Safety-Specific Testing should be derived from 

the software safety analyses
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In-Depth Safety-Specific Testing

1.In-Depth Safety-Specific Testing should be derived from 

the software safety analyses

2.Test cases should be assigned to appropriate test 

events
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In-Depth Safety-Specific Testing

1.In-Depth Safety-Specific Testing should be derived from 

the software safety analyses

2.Test cases should be assigned to appropriate test 

events

3.Ensure results are captured for safety evidence
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Limits of Testing

[W]e can thoroughly test hardware and get out 

requirements and design errors [but we c]an only test 

a small part of potential software behavior.
•Leveson, Nancy G., “A New Approach to Ensuring Safety in Software and 

Human Intensive Systems.”  SECIE Safety in Software and Human Intensive 

Systems. July 2009.

Complacency may also have been involved, i.e., the 

common assumption that software does not fail and 

that software testing is exhaustive and therefore 

additional software checking was not needed.
•Leveson, Nancy G., “A Systems-Theoretic Approach to Safety in Software-

Intensive Systems.” 2004.
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Limits of Testing

[O]ne of the most important limitations of software 

testing is that testing can show only the presence of 

failures, not their absence. This is a fundamental, 

theoretical limitation; generally speaking, the problem 

of finding all failures in a program is undecidable.
•Paul Ammonn, Jeff Offutt. Introduction to Software Testing. 2008.
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Limits of Testing

We cannot test software for correctness: Because of 

the large number of states (and the lack of regularity 

in its structure), the number of states that would have 

to be tested to assure that software is correct is 

preposterous. Testing can show the presence of 

bugs, but, except for toy problems, it is not practical to 

use testing to show that software is free of design 

errors.
•David L. Parnas, A. John van Schouwen, and Shu PO Kwan. “Evaluation of 

Safety-Critical Software.” Communications of the ACM, June 1990.
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An interview with Watts Humphrey 
(the “Father of Software Quality”)

Humphrey: . . . When you think about a big program, big complex system 

program, 2 million lines of code something like that, and you run 

exhaustive tests, what percentage of all the possibilities do you think 

you’ve tested? Any idea?

Booch: Oh it’s going to be an embarrassingly small number probably in 

the less than 20, 30% would be my guess. . .

Humphrey: You’re way off. Way off. I typically ask people and I get back 

numbers 50%, 30%, that kind of thing. I asked the people at Microsoft, the 

Windows people, what they thought. And then we chatted about it a bit 

and they said about 1%.

Booch: Oh my goodness.

Humphrey: And my reaction is they’re high by several orders of 

magnitude. . . the number of possibilities is so extraordinary you literally 

couldn’t do a comprehensive test in the lifetime of the universe today.

“An Interview with Watts Humphrey, Part 26: Catastrophic Software 

Failures and the Limits of Testing” Watts S. Humphrey and Grady 

Booch, Aug 16, 2010, provided by the Computer History Museum.
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Purpose of Testing

Assess quality. This is a tricky objective because quality is multi-

dimensional. . . For example, reliability is . . . about the number of 

reliability-related failures that can be expected in a period of time or a 

period of use. . .To make this prediction, you need a mathematically and 

empirically sound model that links test results to reliability. Testing 

involves gathering the data needed by the model. . .

Verify correctness of the product. It is impossible to do this by testing.

Assure quality. Despite the common title, quality assurance, you can’t 

assure quality by testing. . .

Assess conformance to specification. . .

Find defects. . . the classic objective of testing. . . Generally, we look for 

defects in all interesting parts of the product. . .

Kaner, C. “What Is a Good Test Case?” 2003.
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Purpose of Safety-Specific Testing

In-Depth Safety-Specific Testing should clearly 

demonstrate additional testing rigor.

Test cases should attempt to show that:

1) Causal Factor instances can be realized and 

2) Identified Mitigations don’t work as intended 

The test scenarios should include credible “load” or 

“stress” relevant to the SSSF.



55

Types of In-Depth Testing

Boundary limit testing:

• Data range limits (e.g., highest or lowest possible values of a 

safety-critical input, at or near zero, or near/at/over capacity limits 

of a data storage).

• Timing limits (e.g., at the expiration of a timer or time limit).

Robustness testing:

• Response to abnormal inputs and conditions while ensuring safe 

SSSF performance, e.g., high rates of new track acquisitions and 

drop-outs.

Fault injection testing:

• Response to faults injected during SSSF performance.

Stress testing:

• Response to credible system stress during SSSF performance.



56

Safe state transition testing:

• Exercise all possible state transitions during SSSF performance.

Out of sequence testing:

• Software response to out-of-sequence inputs and conditions 

while ensuring safe performance of the SSSF.

Out-of-range value testing:

• Assurance of safe performance of the SSSF in response to out-

of-range inputs or data values.

Error and exception handling testing:

• Response to errors and exceptions during SSSF performance.

Types of In-Depth Testing
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Timing analysis testing:

• For safety-critical hard real time requirements, use targeted 

load or stress testing of the time-critical SSSF functionality to 

support the findings of timing analyses performed.

Algorithm correctness testing:

• Targeted stress testing of safety-critical algorithms associated 

with the SSSF.

Independent test:

• Testing of prioritized SSSFs by an independent test team, if 

determined to be needed by analysis.

Regression testing:

• Focused regression testing of SwCI 1 or 2 SSSF as determined 

from changes to related functionality.

Types of In-Depth Testing
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• Script a “Restrained Firing” in a Launcher followed immediately 

by a communication failure and “hand-off” of the Launcher to the 

alternate Launch Controller:

– See if all missile launches in the Launcher are “safed,” as 

required after a Restrained Firing

• Script a second Launch Inhibit Command just as the first 

Launch Inhibit Command timeout is occurring, which should 

clear the first Launch Inhibit condition

• Script a “failover” of the primary Launch Controller to the 

alternate Launch Controller just after a Launch Inhibit Command 

has been processed.

• Script a “Restrained Firing” during a Max Launch test scenario.

Examples of In-Depth Testing
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Requirements Analysis
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Safety Requirements Analysis (SRA)

The safety requirements are the driving force behind a 

designer’s ability to design safety into a system and its 

subsystems. . .

From a safety perspective, there are three categories of 

SSRs [software safety requirements] . . . contributing 

software safety requirements (CSSR), generic software 

safety requirements [GSSR], and mitigating software 

safety requirements (MSSR).

[from the Joint Software System Safety Engineering Handbook (2010)]
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Generic Software Safety Requirements 

(GSSRs)

GSSRs are requirements that have been documented 

over the years under the heading of lessons learned 

and best practices. . . The requirements themselves are 

not safety specific and may not yet be tied to a specific 

system hazard.

[from the Joint Software System Safety Engineering Handbook (2010)]
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Some Example GSSRs

• The Launcher software shall adhere to all MISRA 

C++ guidelines for safety-critical software, with the 

exception of those documented, with rationale for 

non-compliance, in Table X.

• The Launcher software shall not perform dynamic 

memory allocation, except during program 

Initialization.

• The Launcher software shall not use C++ templates 

for any safety-significant software data objects or 

functions.
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Contributing Software Safety 

Requirements (CSSRs)

The CSSRs are requirements that should already exist 

in the specifications and were likely authored by 

someone other than a safety engineer. CSSRs are 

related to the performance of the system to accomplish 

its intended function or mission. These requirements 

are not present for the mitigation or control of a hazard;

in fact, they will often contribute to the existence of a 

hazard. An example of a CSSR is “Fire the Weapon.” . . . 

[from the Joint Software System Safety Engineering Handbook (2010)]
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• The Launcher shall power up the Missile for 

preparation to launch on the receipt of a valid Missile 

Select Command.

• The Launcher shall arm the Missile’s First Stage 

Booster on successful completion of Launch 

Preparation.

• The Launcher shall apply Ignition Power on detection 

of all Missile-Launcher Ready to Launch conditions.

• The Missile shall arm the Warhead on detection of 

Safe Separation from the Launch Platform.

Some Example CSSRs
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Mitigating Software Safety 

Requirements (MSSRs)

MSSRs are requirements derived from in-depth mishap 

and hazard causal analyses. . . . the safety engineer 

[performs] the safety analysis to determine whether the 

GSSRs have successfully mitigated the known causal 

factors of the mishaps and hazards. . .

MSSRs are usually authored by safety engineers, with 

input and assistance from the design engineers and 

domain experts associated with the design or 

subsystem being analyzed. These MSSRs must be 

added to the specifications . . .

[from Joint Software System Safety Engineering Handbook (2010)]
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Some Example MSSRs

• The Launcher Deluge subsystem shall continuously 

monitor for Canister and Launcher Overtemperature 

and for Restrained Firing, and command Canister 

Deluge on those Canisters effected by the 

occurrence of any detected Hazards.

• The Launcher shall set a 75 second timer for the 

completion of each Missile Launch Sequence, and 

Safe any selected Missile that has not completed a 

Launch within that time period.
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Analysis of Requirements

Assess all tagged CSSRs/MSSRs for:

• Completeness

• Potential conflict with other requirements

• Ambiguity

.
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• Potential conflicting requirements:

– Automated train doors must open only when train 

is stopped and properly aligned with the platform.

– Automated train doors must open for evacuation in 

the event of an emergency.

• Potential ambiguous requirement:

– Aircraft shall inhibit thrust reversal when the 

aircraft is in flight.

Example Conflicting/Ambiguous
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Architecture Analysis
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Some Terminology 
(from the JSSSEH and other sources)

Architecture: The organizational structure of a system 

or component (IEEE 610.12 – 1990).

– ‘Architecture is concerned with the selection of architectural 

elements, their interaction, and the constraints on those 

elements and their interactions’ (Perry & Wolf, 1992, p. 40-

52).

– ‘Architecture focuses on the externally visible properties of 

software “components”’  (Bass, Clements, & Kazman, 1998).

System Architecture: The arrangement of elements 

and subsystems and the allocation of functions to meet 

system requirements (INCOSE Systems Engineering 

Handbook).
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In control theory, open systems are viewed as interrelated 

components that are kept in a state of dynamic 

equilibrium by feedback loops of information and control.

. . . [A]ccidents often occur . . . as a result:

1.  Incorrect or unsafe control commands are given

2.  Required control actions (for safety) are not provided

3.  Potentially correct control commands are provided at 
the wrong time (too early or too late), or

4. Control is stopped too soon or applied too long.

Nancy G. Leveson, Engineering a Safer World: Systems Thinking Applied to Safety, 2011.

Safety in a Control System
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The Classic “Control Loop”

Controller

Actuators Sensors

Process

Control Algorithms

Set Points

Controlled

Variables

Measured

Variables

Process

Inputs

Process

Outputs

Disturbances
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• Treat each distributed SSSF as a control loop allocated 

across the system architecture. 

• Think of ways the control or feedback signals 

(messages) might be corrupted, delayed or lost 

(potential Causal Factors).

• For each of the Causal Factors identified, think of 

existing or potential mitigations.

Inter-Process Architecture Analysis
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System Path/Thread Analysis 

for a ‘Safe Weapon’ SSSF

Operator CSCI 1 CSCI 2

[] Safe Wpn  [] []

[]

[]

[]

[]

Safe Wpn 

Ack/Nak

[] 

[]

[] WILCO (or [] []

[] CANTPRO) [] []

CSCI = Computer Software Configuration Item

WILCO = “Will Comply”

CANTPRO = “Cannot Process”

Ack = ‘Valid’ Message Acknowledge

Nak = ‘Invalid’ Message (Negative) Acknowledge

Safe Wpn = Safe Weapon
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More Robust ‘Architecture’

for a ‘Safe Weapon’ SSSF

Operator CSCI 1 CSCI 2

[] Safe Wpn  [] []

[] Ack/Nak [] []

[] [] Safe Wpn*  []

[] [] Ack/Nak []

[] [] HAVCO** []

[] HAVCO** [] []

[]

* CSCI 1 timer on 

CSCI 2’s 

HAVCO/CANTCO 

response

[]

** or CANTCO

[]

CSCI = Computer Software Configuration Item

HAVCO = “Have Complied”

CANTCO = “Cannot Comply”

Ack = ‘Valid’ Message Acknowledge

Nak = ‘Invalid’ Message (Negative) Acknowledge

Safe Wpn = Safe Weapon
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In systems theory, emergent properties, such as safety, arise from 

the interactions among the system components. The emergent 

properties are controlled by imposing constraints on the behavior 

and the interactions among the components. Safety then becomes 

a control problem where the goal of the control is to enforce the 

system constraints. Accidents result from inadequate control or 

enforcement of safety-related constraints on the development, 

design, and operation of the system.

. . . Feedback is a basic part . . . of treating safety as a control 

problem. Information flow is a key in maintaining safety.

Nancy G. Leveson, Engineering a Safer World: Systems Thinking Applied to Safety, 2011.

System-Theoretic Accident Model and 

Processes (STAMP)
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STAMP View of System Safety

Hazardous

Process

Hierarchical Safety Control Structure

Inadequate Enforcement

of Safety Constraints on

Process Behavior

Inadequate Control

Hazardous System State

From Figure 4-7 of Nancy G. Leveson, 

Engineering a Safer World: Systems 

Thinking Applied to Safety, 2011
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General Control Loop with Causal Factors
(from Safety Assurance in NextGen, NASA/CR-2012-217553)

Control Algorithm

(Flaws in creation,

process changes

incorrect adaptation

or modification)

Inadequate 

operation Inadequate 

operation

Component failures

Changes over time

Control input or external 

information wrong or missing

Received Control 

Action (delayed, 

etc.)
Provided Feedback 

(Incorrect, no 

information provided, 

measurement 

inaccuracies, delays)

Process input missing 

or wrong

Process output contributes 

to system hazard

Unidentified or out-of-

range disturbance

Conflicting control actions

Provided Control 

Action 

(inappropriate, 

ineffective, or 

missing)

Controller 2

Actuator

Controller

Controlled Process

Sensor

Process Model 

(Inconsistent, 

incomplete, or 

incorrect) Received Feedback 

(Inadequate, missing, 

or delayed)

STAMP/STPA provides a good framework 

for analyzing SSSF safety control. 
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Some Thoughts On STAMP, STPA, and 

Meeting MIL-STD-882E Required LoR

We do not assign a SwCI because in STAMP software can and 

should be treated in the same way as hardware, i.e., the hazards are 

identified along with causal scenarios leading to the hazards. Then 

engineers can eliminate or mitigate those causes according to 

standard system safety practice and design precedence . . .

Nancy G. Leveson, “STPA (System-Theoretic Process Analysis) Compliance with Army Safety 

Standards and Comparison with SAE ARP 4761,” a whitepaper on the compliance of STPA with 

MIL-STD-882E and Army AMCOM Regulation 385-17.
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Some Thoughts On STAMP, STPA, and 

Meeting MIL-STD-882E Required LoR

We do not assign a SwCI because in STAMP software can and 

should be treated in the same way as hardware, i.e., the hazards are 

identified along with causal scenarios leading to the hazards. Then 

engineers can eliminate or mitigate those causes according to 

standard system safety practice and design precedence . . .

Nancy G. Leveson, “STPA (System-Theoretic Process Analysis) Compliance with Army Safety 

Standards and Comparison with SAE ARP 4761,” a whitepaper on the compliance of STPA with 

MIL-STD-882E and Army AMCOM Regulation 385-17.

THOUGHTS:

• STAMP/STPA is a very good framework for software safety 

architecture analysis.
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Some Thoughts On STAMP, STPA, and 

Meeting MIL-STD-882E Required LoR

We do not assign a SwCI because in STAMP software can and 

should be treated in the same way as hardware, i.e., the hazards are 

identified along with causal scenarios leading to the hazards. Then 

engineers can eliminate or mitigate those causes according to 

standard system safety practice and design precedence . . .

Nancy G. Leveson, “STPA (System-Theoretic Process Analysis) Compliance with Army Safety 

Standards and Comparison with SAE ARP 4761,” a whitepaper on the compliance of STPA with 

MIL-STD-882E and Army AMCOM Regulation 385-17.

THOUGHTS:

• STAMP/STPA is a very good framework for software safety 

architecture analysis.

• It would be a very “heavy lift” for an individual program or PFS to 

make the case that STAMP/STPA is replacement for required LoR.
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Some Thoughts On STAMP, STPA, and 

Meeting MIL-STD-882E Required LoR

We do not assign a SwCI because in STAMP software can and 

should be treated in the same way as hardware, i.e., the hazards are 

identified along with causal scenarios leading to the hazards. Then 

engineers can eliminate or mitigate those causes according to 

standard system safety practice and design precedence . . .

Nancy G. Leveson, “STPA (System-Theoretic Process Analysis) Compliance with Army Safety 

Standards and Comparison with SAE ARP 4761,” a whitepaper on the compliance of STPA with 

MIL-STD-882E and Army AMCOM Regulation 385-17.

THOUGHTS:

• STAMP/STPA is a very good framework for software safety 

architecture analysis.

• It would be a very “heavy lift” for an individual program or PFS to 

make the case that STAMP/STPA is replacement for required LoR.

• My experience has been that MANY software problems are not at 

the architecture level (and can’t be eliminated there).
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Design Analysis
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What is “Design”? 

‘Design focuses on the properties of software 

“components” that are not externally visible.’ 
[S. Whitford, 2015]
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Design
What is NOT Externally Visible

What is NOT externally visible?

– The organization of elements inside each software component, 

e.g.:

o Is it object oriented (Java, C++) or not (C, Assembler)?

o Is it single threaded or multi-threaded?

– The data flow between the elements inside each software 

component, e.g.:

o Message passing

o Call parameters 

o Global data

– The control flow between the elements inside each software 

component, e.g:

o Procedure/function calls

o Semaphores/mutexes/monitors
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• Most SwCI 1 or SwCI 2 SSSFs are safety-critical because the 

software has command authority over a safety-critical system 

action.

Safety-Critical Decision Points
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• Most SwCI 1 or SwCI 2 SSSFs are safety-critical because the 

software has command authority over a safety-critical system 

action.

• The software is therefore responsible for making the decision to 

take that action, often the release of lethal energy.

Safety-Critical Decision Points
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• Most SwCI 1 or SwCI 2 SSSFs are safety-critical because the 

software has command authority over a safety-critical system 

action.

• The software is therefore responsible for making the decision to 

take that action, often the release of lethal energy.

• If the data used to make the safety-critical decision is corrupted 

or stale, the software can make the wrong decision with 

catastrophic results.

Safety-Critical Decision Points
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• Most SwCI 1 or SwCI 2 SSSFs are safety-critical because the 

software has command authority over a safety-critical system 

action.

• The software is therefore responsible for making the decision to 

take that action, often the release of lethal energy.

• If the data used to make the safety-critical decision is corrupted 

or stale, the software can make the wrong decision with 

catastrophic results.

• Design (and Code) Analysis should be focused on how the 

software maintains, or could fail to maintain, the integrity of the 

data used at each Safety-Critical Decision Point in the SSSF.

Safety-Critical Decision Points



90

Is it safe to launch the missile?

– Was a valid Launch Command received from the Operator?

– Is the Cell Hatch fully open?

• Does the Cell Hatch No. 1 sensor report “open”?

• Does the Cell Hatch No. 2 sensor report “open”?

– Is the Uptake Hatch fully open?

• Does the Uptake Hatch No. 1 sensor report “open”?

• Does the Uptake Hatch No. 2 sensor report “open”?

– Has it been long enough since the last missile lunched?

– Is the Close-In Weapon System (CIWS) not currently firing? 

(Implemented as a launchInhibited Boolean (TRUE/FALSE) 

data item.)

SCDP: An Example



91

‘Launch Inhibited’ implemented 

with multiple threads

Thread A:

[ Launch Missile Command received ]

boolean isMslLaunchOK ()

If . . . hatch statuses and

last missile launch time are “ok”

. . . && (launchInhibited == FALSE)

return TRUE

else

return FALSE

launchInhibited is set to TRUE when a CIWS engagement is about to start. 
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‘Launch Inhibited’ implemented 

with multiple threads (cont’d)

Thread B (higher priority):

[ Launch Inhibit Command 

received ]

. . .

setLaunchInhibit ()

. . . if old timer active, cancel it

. . . launchInhibited = TRUE

. . . Initiate a 20s timer to clear

inhibit

Thread C (lower priority): 

[ 20s Launch Inhibit timer

expires ]

. . .

clearLaunchInhibit ()

. . . launchInhibited = FALSE

Intent is to clear a pre-existing Launch Inhibit condition after 20 seconds.
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Analysis of ‘Launch Inhibited’

Thread B (higher priority):

[ Receipt of new Launch 

Inhibit command unblocks 

thread ]

. . .

setLaunchInhibit ()

. . . if old timer active, cancel it

(but, it’s too late)

. . . launchInhibited = TRUE

. . . Initiate a (new) 20s timer

[thread blocks on task 

completion] 

Thread C (lower priority): 

[ Old 20s Launch Inhibit 

timer expires ]       

. . .

clearLaunchInhibit ()

. . . launchInhibited = FALSE

Timer intended to clear OLD Launch Inhibit condition clears NEW one instead!. 

A data synchronization mechanism should be used to protect the shared data item.
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Establish the pros and cons of the design of each 

software component to which the SSSF is allocated 

and determine whether they could be Causal Factors or 

Mitigations for a SSSF functional failure due to an 

erroneous Safety-Critical Decision by the software. (It’s 

all about the safety-critical data integrity.)

Some Sources of 

Design Causal Factors
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Establish the pros and cons of the design of each 

software component to which the SSSF is allocated 

and determine whether they could be Causal Factors or 

Mitigations for a SSSF functional failure due to an 

erroneous Safety-Critical Decision by the software. (It’s 

all about the safety-critical data integrity.)

Design weaknesses with respect to data integrity, e.g.:

• Shared data “race conditions” 

• Loss of data in software “failovers”

• Failure to refresh temporal data

• Unhandled exceptions

Some Sources of 

Design Causal Factors
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Multi-(two)threaded Design

Thread B

• stack

Thread A

• stack

Variables or objects in the heap or data can be shared by the 

threads. This can lead to race conditions or thread deadlock. 

(Text can also be shared, but (usually) does not change in 

value.)

shared resources

• heap

• (global) data

• text

Process

Single, shared address space
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Pros and Cons of

Multi-threaded Design

Pros for multi-threaded design:

• Allows software to be more responsive to an unpredictable 

external environment (new inputs from an operator, another 

computer, or a sensor)

• Each thread can be ‘appropriately prioritized’

Cons for single threaded design:

• Improperly synchronized threads can corrupt shared data

• Improperly synchronized threads can deadlock (block each 

other forever)

• Improperly prioritized threads can cause starvation or 

unpredictable delays

• Much more difficult to analyze or test than single-threaded 

designs
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‘Concurrency in software is difficult. However, much of 

this difficulty is a consequence of the abstractions for 

concurrency that we have chosen to use. The dominant 

one in use today for general-purpose computing is 

threads. But non-trivial multi-threaded programs are 

incomprehensible to humans.’

[The Problem with Threads, Technical Report No. UCB/EECS-2006-1, Edward A. 

Lee, Professor, Chair of EE, Associate Chair of EECS, University of California at 

Berkley, January 10, 2006]

On the Difficulties with Multi-threading
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Single Threaded Design

A (usually infinite) loop, for an embedded program to “do its thing 

forever.”

– Checks for input(s) [e.g., messages, sensor inputs]

– Performs any necessary processing of the input(s)

– Produces output(s) [e.g., messages, actuator control signals]

Example:

int main(void)

{   // initialization code here – done once

for ( ; ; )  // or while (true) or while (1)

{ // read or detect stuff

// do some calculation

// write or command stuff

}

}

Thread
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Pros and Cons of

Single Threaded Design

Pros for single threaded design:

• Easier to perform analysis (e.g., design, code, worst case 

timing)

• Easier to implement the first time

Cons for single threaded design:

• Delay in responding to external inputs

• Can become a bottleneck in the larger system

• Hard to prioritize multiple competing “tasks”

• Must implement the details for handling all I/O

• Becomes hard to maintain as more functionality is added
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Single Threaded Design

With Interrupt Service

Process’s

‘main’ thread

Internal 

interrupt 

service

External 

interrupt 

service

Shared data

and resources

Shared data

and resources

Shared data

and resources

• With few exceptions, Interrupt Service Routines (ISRs) should be short 

and sweet. For input, read the data into a buffer or queue, set a flag for 

‘main’ to see, then get out of the way (let ‘main’ process the data).

• Non-atomic access by ‘main’ to data shared with an ISR must be 

protected from potential corruption (e.g., locking out the interrupt that 

drives the ISR while ‘main’ is reading from or writing to the shared data).
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Pros and Cons of

Design With Interrupt Service

Pros for single threaded design with interrupt service:

• Somewhat more responsive to external inputs

• Relatively easy to perform analysis (e.g., design, code, worst 

case timing)

• Still easy to implement the first time

Cons for single threaded design with interrupt service:

• Delay in responding to external inputs

• Main loop can still become a bottleneck (input queue 

overflow, delay in responding to external system)

• Still hard to prioritize multiple competing “tasks”

• Potential for corrupting data shared between ISRs and ‘main’

• Still hard to maintain as more functionality is added
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Details of Pulse Width Modulation 

(Mis-)handled in the ISR

‘main’ thread

ISR to 

handle 

PWM

Shared data

and resources

• A Programmable Power Supply was implemented so that almost all 

processing of sensors and control commands for pulse-width 

modulation (PWM) of the power output to power up missiles in a 

launcher for preparation to launch was performed inside the ISR. 

• When a new missile was introduced, the interrupt occurred every 10 u-

sec’s and the ISR to 11 u-sec’s to execute the additional processing for 

the power requirements for the new missile’s launch preparation.
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An ISR / ’main’ example 

of non-atomic data sharing

‘main’ thread

ISR for 

reading 

the IMU 

New IMU data 

passed to ‘main’

• Non-atomic access by ‘main’ to data shared with an ISR must be 

protected from potential corruption (e.g., locking out the interrupt that 

drives the ISR while ‘main’ is reading from or writing to the shared data).

• Inertial Measurements include several values - linear accelerations (x, 

y, and z) and rotational measurements (about each axis). Is the IMU 

ISR locked out while ‘main’ is reading the shared IMU data?
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Code Analysis
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Code Analysis vs. Design Analysis 

The difficulty of using the term "design" in relation to 

software is that in some sense, the source code of a 

program is the design for the program that it produces.

[Wikipedia article on “Software Design,” February 7, 2015]
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Focus for LoR 1 Code Analysis

SwCI 1 code is typically responsible for releasing potentially 

catastrophic energy or for detecting a potentially catastrophic 

hazardous condition. Either way that usually involves one or more 

Safety-Critical Decision Points (SCDPs) in the software. These 

SCDPs use one or more software data items to make the decision.

• Focus code analysis on identification of internal data items 

used by software to make critical decisions to perform a 

safety-critical action or not.

o Scope may expand as analysis progresses.

• Investigate how a data item’s value is set and referenced by 

the software.

• Static or dynamic code analysis tools should be used for a 

detailed analysis and to document important technical 

aspects.
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Program Slicing

In computer programming, program slicing is the 

computation of the set of programs statements, the 

program slice, that may affect the values at some 

point of interest, referred to as a slicing criterion. 

Program slicing can be used in debugging to locate 

source of errors more easily. Other applications of 

slicing include software maintenance, optimization, 

program analysis, and information flow control.

[Wikipedia article on “Program Slicing,” March 17, 2015]
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Some Code Analysis Tools

Tools to help an analyst explore the code:

– Eclipse (Java, C/C++) (Open Source Software)

– NetBeans (Java, C++)

– Understand for C++/Java (SCI Tools)

Tools to do automated static code analysis:

– CodeSonar (GrammaTech)

– Klocwork (Rogue Wave)

– Code Advisor (Coverity)

– PC-lint (Gimpel Software)
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Code Analysis

1.For each SwCI 1 SSSF, identify and locate the SCDPs 

associated the SSSF.

2.Using appropriate automated or semi-automated code 

analysis tools, perform a “backward flow” analysis of 

the code from safety-critical decision points in the 

software.

3.Based on the results of the Requirements, Architecture, 

and Design Analyses, perform other appropriate code 

analyses, especially analysis of the implementation of 

safety critical mitigations for the SSSF.
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Code Analysis
-- Step 1 --

1.  For each SwCI 1 SSSF, identify and locate the 

SCDPs associated the SSSF.

• Locate the code that performs energy release. e.g., 

weapon firing, detonation, booster ignition. (potential 

Causal Factor) or that detects and responds to a 

hazardous condition.
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An Example L-DETS SCDP

Source code for safety-critical function SetFirePulse and associated functions in file SafetyCritical_RX.c

//****************************************************************************

// @Function      void SetFirePulse(void)

//----------------------------------------------------------------------------

// @Description   This function applies a 30 millisecond firing Pulse to detonate the unit.

//****************************************************************************

void SetFirePulse(void)

{

if(G_SCV.SC_DisableSafetyCriticalProcessing == SC_PROCESSING_ENABLED)

{

if(IsArmPinRemoved() == ARM_PIN_HAS_BEEN_REMOVED)

{                                                      // When pin is pulled we get a high

FIRE_PULSE_PORT = 1;

G_SCV_PortFImage |= FIRE_PULSE_BIT;

G_SCV.SC_DetonatorHasFired = DETONATOR_HAS_FIRED;

DelayMilliSecondsNoInterrupt(30);

SetToSafeState();

}

}

}

Is detonation currently enabled?
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Code Analysis
-- Step 2 --

2.  Using appropriate automated or semi-automated 

code analysis tools, perform a “backward flow” analysis 

of the code from safety-critical decision points in the 

software.

• The analysis should focus on identifying potential 

causes of stale or corrupt data being present at the 

safety-critical decision point.
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An Example L-DETS SCDP (cont’d)

Control Flow Analysis: How is SetFirePulse called in the L-DETS Detonator software? 

SetFirePulse is only called from the function DetonateUnit, which is called on two 

paths within the “main” thread: one if the Fire Command is received directly from 

the Controller and the second if it has been forwarded from another Detonator.
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An Example L-DETS SCDP (cont’d)

Data Flow Analysis: Where/how is SC_DisableSafetyCriticalProcessing updateded? 

SC_DisableSafetyCriticalProcessing is only enabled and disabled at 

five locations in the software. Understanding the purpose and use of 

each location is needed to assess for potential weaknesses or problems..

Blue highlighting indicates SC_DisableSafetyCriticalProcessing is referenced but not changed.
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An Example L-DETS SCDP (cont’d)

Data Flow Analysis: Where/how is SC_DisableSafetyCriticalProcessing updateded? 

SC_DisableSafetyCriticalProcessing is only enabled at two locations in 

the software.

Blue highlighting indicates SC_DisableSafetyCriticalProcessing is referenced but not changed.
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Code Analysis
-- Step 3 --

3.  Based on the results Requirements Analysis, Architecture 

Analysis, or Design Analysis, perform other appropriate code analyses 

that might have potential safety-critical impacts, such as:

– Timing analysis – for safety-critical hard real time requirements, 

using appropriate static or dynamic code analysis tools to analyze 

the worst case execution time (WCET).

– Interrupt analysis – analysis of the coordination of interrupt 

handling with interruptible and non-interruptible safety-critical 

processing.

– Algorithm correctness – analysis of the correctness of the 

implementation of any safety-critical algorithm(s)..

– Data structure/usage analysis – analysis of the structure and 

use of safety-critical data objects associated with the SSSF.

– OS function analysis - analysis of correct use of OS functions 

used to implement LOR 1 functionality for the SSSF.
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Wrap Up
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Some Key Points

• Purpose of LoR is to focus and manage



120

Some Key Points

• Purpose of LoR is to focus and manage

• Software FHA should: 

o Be performed as early as reasonable

o “Rack and stack” SSSFs by SwCI/LoR

o Identify potential redundancies to reduce SwCI 1 

SSSFs



121

Some Key Points

• Purpose of LoR is to focus and manage

• Software FHA should: 

o Be performed as early as reasonable

o “Rack and stack” SSSFs by SwCI/LoR

o Identify potential redundancies to reduce SwCI 1 

SSSFs

• Requirements analysis should focus on:

o Incompleteness

o Ambiguities

o Conflicts
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Some Key Points

• Architecture analysis should focus on weaknesses 

in the command and control of distributed Safety-

Significant Software Functions
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Some Key Points

• Architecture analysis should focus on weaknesses 

in the command and control of distributed Safety-

Significant Software Functions

• Design and code analysis should focus on Safety-

Critical Decision Points (can the internal data items 

used by the software be corrupted or stale)
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Some Key Points

• Architecture analysis should focus on weaknesses 

in the command and control of distributed Safety-

Significant Software Functions

• Design and code analysis should focus on Safety-

Critical Decision Points (can the internal data items 

used by the software be corrupted or stale)

• In-Depth Safety-Specific Testing should be derived 

from the analysis results
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Some Key Points

• Architecture analysis should focus on weaknesses 

in the command and control of distributed Safety-

Significant Software Functions

• Design and code analysis should focus on Safety-

Critical Decision Points (can the internal data items 

used by the software be corrupted or stale)

• In-Depth Safety-Specific Testing should be derived 

from the analysis results

• All analyses and testing should be focused on 

Causal Factors and Mitigations


