
19702
MIL-STD-882E Software
System Safety Tutorial

An Approach for
Focused and Effective
Level of Rigor (LoR)

Stuart A. Whitford

Booz Allen Hamilton

20th Annual NDIA Systems Engineering Conference

Springfield, VA

23 October 2015

2

Agenda

• MIL-STD-882E Requirements for Software Safety

• DoD Guidance for Software Safety

• Software System Safety Hazard Analysis

• Functional Hazard Analysis (FHA) for Software

• In-Depth Safety-Specific Testing

• Requirements Analysis

• Architecture Analysis

• Design Analysis

• Code Analysis

• Wrap Up

3

Learning Objectives

Gain an understanding of:

• A framework for performing and documenting

MIL-STD-882E-required software safety Level of

Rigor (LoR)

NOTE: Blue font is used in these slides to highlight significant terms

or statements.

4

Learning Objectives

Gain an understanding of :

• A framework for performing and documenting

MIL-STD-882E-required software safety Level of

Rigor (LoR)

NOTE: This framework will NOT be a detailed step-by-step process

of exactly how to perform each analysis on every system

5

Learning Objectives

Gain an understanding of:

• A framework for performing and documenting

MIL-STD-882E-required software safety Level of

Rigor (LoR)

• How to focus analysis of software requirements

and architecture on the command and control of

Safety-Significant Functions

6

Learning Objectives

Gain an understanding of:

• A framework for performing and documenting

MIL-STD-882E-required software safety Level of

Rigor (LoR)

• How to focus analysis of software requirements

and architecture on the command and control of

Safety-Significant Functions

• How to focus analyses of the design and code

on Safety-Critical Decision Points

7

Learning Objectives

Gain an understanding of:

• A framework for performing and documenting

MIL-STD-882E-required software safety Level of

Rigor (LoR)

• How to focus analysis of software requirements

and architecture on the command and control of

Safety-Significant Functions

• How to focus analyses of the design and code

on Safety-Critical Decision Points

• How to derive the safety-specific test cases from

the analysis

8

MIL-STD-882E Requirements for

Software Safety

9

Some MIL-STD-882E Terminology

Software. A combination of associated computer

instructions and computer data that enable a computer

to perform computational or control functions. Software

includes computer programs, procedures, rules, and

any associated documentation pertaining to the

operation of a computer system. Software includes new

development, complex programmable logic devices

(firmware), NDI, COTS, GOTS, re-used, GFE, and

Government-developed software used in the system.

Software system safety. The application of system

safety principles to software.

10

Software control category. An assignment of the degree

of autonomy, command and control authority, and

redundant fault tolerance of a software function in

context with its system behavior.

SCC Software Control Category

SwCI Software Criticality Index

Level of rigor (LoR). A specification of the depth and

breadth of software analysis and verification activities

necessary to provide a sufficient level of confidence that

a safety-critical or safety-related software function will

perform as required.

Some MIL-STD-882E Terminology

11

Safety-critical. A term applied to a condition, event,

operation, process, or item whose mishap severity

consequence is either Catastrophic or Critical (e.g.,

safety-critical function, safety-critical path, and safety-

critical component).

Safety-related. A term applied to a condition, event,

operation, process, or item whose mishap severity

consequence is either Marginal or Negligible.

Safety-significant. A term applied to a condition, event,

operation, process, or item that is identified as either

safety-critical or safety-related.

Some MIL-STD-882E Terminology

12

Safety-critical function (SCF). A function whose failure

to operate or incorrect operation will directly result in a

mishap of either Catastrophic or Critical severity.

SSF Safety-Significant Function

SSSF Safety-Significant Software Function

Some MIL-STD-882E Terminology

13

[from MIL-STD-882E]

4.1 General. When this Standard is required in a

solicitation or contract, but no specific tasks are

included, only Sections 3 and 4 apply. The definitions in

3.2 and all of Section 4 delineate the minimum

mandatory definitions and requirements for an

acceptable system safety effort for any DoD system.

. . .

4.3.2 Identify and document hazards. Hazards are

identified through a systematic analysis process that

includes system hardware and software, system

interfaces (to include human interfaces) . . .

Requirements for Software Safety

14

[from MIL-STD-882E]

4.4 Software contribution to system risk. The

assessment of risk for software, and consequently

software-controlled or software-intensive systems,

cannot rely solely on the risk severity and probability. . .

Therefore, another approach shall be used for the

assessment of software’s contributions to system risk

that considers the potential risk severity and the degree

of control that software exercises over the hardware.

Requirements for Software Safety

15

Severity Categories

Description
Severity

Category
Mishap Result Criteria

Catastrophic 1
Could result in one or more of the following: death . . .

or monetary loss equal to or exceeding $10M.

Critical 2

Could result in one or more of the following: permanent

partial disability, injuries or . . . monetary loss equal to

or exceeding $1M but less than $10M.

Marginal 3

Could result in one or more of the following: injury . . .

resulting in one or more lost work day(s) . . . or

monetary loss equal to or exceeding $100K but less

than $1M.

Negligible 4

Could result in one or more of the following: injury or

occupational illness not resulting in a lost work day . .

or monetary loss less than $100K.

16

Software Control Categories

Name Level Description

Autonomous

(AT)
1

Software functionality that exercises autonomous control

authority . . . without the possibility of predetermined safe

detection and intervention . . .

Semi-

autonomous

(SAT)

2

Software functionality that exercises control . . . allowing time

for predetermined safe detection and intervention by

independent safety mechanisms . . .

Redundant

Fault Tolerant

(RFT)

3
Software functionality that issues commands . . . requiring a

control entity to complete the command function . . .

Influential

(INF)
4

Software generates information of a safety-related nature

used to make decisions by the operator . . .

No Safety

Impact

(NSI)

5

Software functionality that does not possess command or

control authority . . . and does not provide safety-significant

information . . .

17

Software Safety Criticality Matrix

Severity

\\

Control

Catastrophic

(1)

Critical

(2)

Marginal

(3)

Negligible

(4)

1 (AT) SwCI 1 SwCI 1 SwCI 3 SwCI 4

2 (SAT) SwCI 1 SwCI 2 SwCI 3 SwCI 4

3 (RFT) SwCI 2 SwCI 3 SwCI 4 SwCI 4

4 (INF) SwCI 3 SwCI 4 SwCI 4 SwCI 4

5 (NSI) SwCI 5 SwCI 5 SwCI 5 SwCI 5

NOTE: The Influential (INF) SCC only applies to the generation of ‘safety-related’ information

for the operator.

18

SwCI Level of Rigor Tasks

SwCI 1

Program shall perform analysis of requirements,

architecture, design, and code; and conduct in-depth

safety-specific testing.

SwCI 2

Program shall perform analysis of requirements,

architecture, and design; and conduct in-depth safety-

specific testing.

SwCI 3
Program shall perform analysis of requirements and

architecture; and conduct in-depth safety-specific testing.

SwCI 4 Program shall conduct safety-specific testing.

SwCI 5
Once assessed by safety engineering as Not Safety, then

no safety specific analysis or verification is required.

Software Safety Levels of Rigor

19

Safety Risk for Failure to Perform LoR

RELATIONSHIP BETWEEN SwCI, RISK LEVEL, LoR TASKS, AND RISK

SwCI
Risk

Level
Software LoR Tasks and Risk Assessment/Acceptance

1 High
If SwCI 1 LOR tasks are unspecified or incomplete, the

contributions to system risk will be documented as HIGH . . .

2 Serious
If SwCI 2 LOR tasks are unspecified or incomplete, the

contributions to system risk will be documented as SERIOUS . . .

3 Medium
If SwCI 3 LOR tasks are unspecified or incomplete, the

contributions to system risk will be documented as MEDIUM . . .

4 Low
If SwCI 4 LOR tasks are unspecified or incomplete, the

contributions to system risk will be documented as LOW . . .

5
Not

Safety
No safety-specific analyses or testing is required.

20

DoD Guidance for Software Safety

21

[from Tasks 102 and 103 – System Safety Program Plan and Hazard
Management Plan]

102/103.2.6 Hazard analysis.

. . .

i. Describe a systematic software system safety
approach to:

. . .

(4) Identify and assign the Software Criticality
Index (SwCI) for each safety-significant software
function (SSSF) and its associated requirements.

MIL-STD-882E Guidance for

Software Safety

22

[from Task 208 – Functional Hazard Analysis]

208.2.1 . . .

g. An assessment of Software Control Category

(SCC) for each Safety-significant Software Function

(SSSF). Assign a Software Criticality Index (SwCI)

for each SSSF mapped to the software design

architecture.

MIL-STD-882E Guidance for

Software Safety

23

4.2.1.4 Defining and Using the Software Criticality

Matrix

... It is through this prioritization that safety-significant

code can receive the appropriate robustness and level

of rigor over the lifecycle, while effectively managing the

critical resources of the program. The most important

aspect of the activity is that the software with the

highest level of control over safety-significant hardware

must receive more attention or level of rigor than

software with less safety risk potential. . .

JSSEH Guidance

24

4.2.1.4 Defining and Using the Software Criticality Matrix

... It is through this prioritization that safety-significant

code can receive the appropriate robustness and level of

rigor over the lifecycle, while effectively managing the

critical resources of the program. The most important

aspect of the activity is that the software with the highest

level of control over safety-significant hardware must

receive more attention or level of rigor than software with

less safety risk potential. . . This methodology helps

prioritize and manage the critical resources of schedule,

budget, and personnel associated with the development

of the system.

JSSEH Guidance

25

3.5. [LoR] Allocations to Safety-Significant Functions

The allocation of SSFs to specific [LoR] categories is

essential, both to ensure the provision of rigor to the

functions of highest safety criticality and to ensure the

management of the critical resources necessary to

implement that rigor. . . [T]he accomplishment of the

subtasks … must be thoroughly documented within the

artifacts of the safety analysis.

JS-SSA Software System Safety:
Implementation Process and Tasks Supporting MIL-STD-882E

26

Software System Safety

Hazard Analysis – an Overview

27

14-5.c. ... focus ... on hazard identification and

mitigation of software causal factors, as opposed to

error removal.

14-5.d. ... focus … on hazard and software causal

factor identification and mitigation, as opposed to

requirements perfection. [Software safety requirements

should be based on mitigating software related

hazards.]

NAVSEA SW020-AH-SAF-010, Section II, Weapon System Safety Guidelines Handbook
System Safety Engineering and Management.

Where to Focus

28

Software System Safety Hazard Analysis

Step 1 – Perform a software Functional Hazard Analysis

(FHA)

29

Step 1 – Perform a software Functional Hazard Analysis

(FHA)

Step 2 – For each SSSF, perform (and document) all

required tasks.

For each analysis task, identify:

a. Potential Causal Factors

b. Potential (or actual) Mitigations

c. Appropriate In-Depth Safety-Specific Testing for

each CF and Mitigation

Software System Safety Hazard Analysis

30

FHA for Software
[the beginning of a MIL-STD-882E software safety effort]

31

Performing the Software FHA

Step 1 – Perform a software Functional Hazard Analysis

(FHA)

a. Identify each Safety-Significant Function (SSF) that

has been allocated to software (a SSSF).

b. Assess the level of software control of the function

(the Software Control Category, or SCC).

c. Identify associated safety requirements or design

constraints.

d. For highly critical (SwCI 1) SSSFs, identify potential

system or software design redundancies to lower the

SwCI (and required LoR).

32

[from Task 208 – Functional Hazard Analysis]

208.1 Purpose . . . The initial FHA should be

accomplished as early as possible in the Systems

Engineering (SE) process to enable the engineer to . . .

• identify and document SCFs, SCIs, SRFs, and

SRIs;

• allocate and partition SCFs and SRFs in the

software design architecture;

• and identify requirements and constraints to the

design team.

MIL-STD-882E Guidance for FHA

33

A working definition for ‘Function’

The following is a working definition we will use for the

term ”software function” (somewhat modeled after a

mathematical function):

Given an input, or a set of related inputs, a software

function produces one or more of the following

outcomes:

• An externally observable system action;

• Externally observable digital information that can

be used by a system operator or another software

entity; or

• An internal change of digital state.

NOTE: The use of ‘external’ and ‘internal’ refers to the context of the

software component(s).

34

Naming a Function

Name each SSSF using a verb (performing an action) and

a noun (object of the verb):

Examples:

• Arm the warhead

• Detonate the warhead

• Arm the booster

• Ignite the booster

• Release the missile

• Safe the booster

• Fire the weapon

35

Choosing the ‘size’ of a SSSF

Use engineering judgement to choose the best ‘size’ of

SSSFs for effective and efficient analysis and test - too

high a level puts too much functionality all in the same

“analysis bucket,” while too low a level breaks the

analysis into too many pieces.

Some examples:

• Too high: Perform a Standard Missile engagement

• Too low: Close the K1 relay

• Good level: Arm the missile booster

36

Functional Failure Types
[from NAVSEA SW020-AH-SAF-0010]

Function:

1 Fails to operate

2 Operates incorrectly/erroneously

3 Operates inadvertently

4 Operates at wrong time (early)

5 Operates at wrong time (late)

6 Unable to stop operation

7 Receives erroneous data

8 Sends erroneous data

9 Conflicting data or information

37

Performing the Software FHA
-- Step 1a --

Step 1a. Identify each Safety-Significant Function (SSF)

that has been allocated to software (a SSSF).

• Use the nine functional failure types to reason about

the different ways the SSSF might fail with potential

safety impact.

Ex. – Software-allocated missile release function

fails to operate after missile ignition.

• Document the level of mishap severity that might

result from the functional failure.

Note: For the weapon systems and combat systems we work with,

this is most often CAT for software functional failures.

38

Step 1b. Assess the level of software control of the

function (the Software Control Category, or SCC).

To claim Semi-autonomous SCC, document how each

SSSF failure is detected and what the independent

safety mechanism that mitigates or controls the

resulting hazard is.

To claim Redundant Fault Tolerant SCC, document

what the redundancies are and how they mitigate or

control each safety-significant failure type for the

SSSF.

Performing the Software FHA
-- Step 1b --

39

• Safe weapon SSSF fails to operate

• Arm warhead SSSF operates inadvertently

• Detonate warhead SSSF operates inadvertently

• Detonate warhead SSSF operates at wrong time (early)

• Detonate warhead SSSF operates at wrong time (late)

NOTE: The SSSF hazard severity or the software control category may

vary for each functional failure type.

Examples of SSSF Functional Failures

40

Step 1c. Identify associated safety requirements or design

constraints.

The safety requirements and design constraints are

mitigations for the safety-significant SSSF failures.

Communicate these with the system and software

engineers to ensure:

• They are included in the requirements and design

(or coding standards) for the system

• There are appropriate tests (or inspections or

analyses) included to validate the mitigations work

to control identified safety-significant failures for

the SSSF.

Performing the Software FHA
-- Step 1c --

41

• The Launcher shall include an independent Canister

Deluge sub-system to command Canister Flooding in

case of Launcher Overtemperature or Missile

Restrained Firing.

• The Launcher shall only process Missile Launch-

related commands if the Launcher has been placed

in Tactical Mode by the Weapon Control System.

• The Launcher shall allow the selection of no more

than two Missiles for Launch at the same time.

Examples of Safety Requirements and

Design Constraints

42

Step 1d. For highly critical, SwCI 1 SSSFs, identify

potential system or software design redundancies that

could lower the SwCI (and required LoR).

These fault tolerant redundancies are mitigations for

safety-significant SSSF failures. Communicate these

with the system and software engineers to ensure:

• They are included in the requirements and design

for the system

Ex. – The Boeing 777 primary flight software is implemented in three

similar computation channels (triple modular redundancy), each with

three dis-similar ‘computation lanes’ (written in different programming

languages).

Performing the Software FHA
-- Step 1d --

43

FHA Advantages
[from NAVSEA SW020-AH-SAF-010 Section III]

The following are significant advantages of the [FHA]:

a. Is easily and quickly performed.

b.Does not require considerable expertise.

c. Is relatively inexpensive, yet provides meaningful

results.

d.Provides rigor for focusing on hazards associated

with system functions.

e.Good tool for software safety analysis.

44

FHA Disadvantages
[from NAVSEA SW020-AH-SAF-010 Section III]

The following are disadvantages of the [FHA]:

a. . . . it might overlook other types of hazards, such as

those dealing with hazardous energy sources or

sneak circuit paths.

b.After a functional hazard is identified, further

analysis is required to determine if the causal factors

are possible.

c. Cannot completely replace the need for a PHA.

45

In-Depth Safety-Specific Testing

46

In-Depth Safety-Specific Testing

1.In-Depth Safety-Specific Testing should be derived from

the software safety analyses

47

In-Depth Safety-Specific Testing

1.In-Depth Safety-Specific Testing should be derived from

the software safety analyses

2.Test cases should be assigned to appropriate test

events

48

In-Depth Safety-Specific Testing

1.In-Depth Safety-Specific Testing should be derived from

the software safety analyses

2.Test cases should be assigned to appropriate test

events

3.Ensure results are captured for safety evidence

49

Limits of Testing

[W]e can thoroughly test hardware and get out

requirements and design errors [but we c]an only test

a small part of potential software behavior.
•Leveson, Nancy G., “A New Approach to Ensuring Safety in Software and

Human Intensive Systems.” SECIE Safety in Software and Human Intensive

Systems. July 2009.

Complacency may also have been involved, i.e., the

common assumption that software does not fail and

that software testing is exhaustive and therefore

additional software checking was not needed.
•Leveson, Nancy G., “A Systems-Theoretic Approach to Safety in Software-

Intensive Systems.” 2004.

50

Limits of Testing

[O]ne of the most important limitations of software

testing is that testing can show only the presence of

failures, not their absence. This is a fundamental,

theoretical limitation; generally speaking, the problem

of finding all failures in a program is undecidable.
•Paul Ammonn, Jeff Offutt. Introduction to Software Testing. 2008.

51

Limits of Testing

We cannot test software for correctness: Because of

the large number of states (and the lack of regularity

in its structure), the number of states that would have

to be tested to assure that software is correct is

preposterous. Testing can show the presence of

bugs, but, except for toy problems, it is not practical to

use testing to show that software is free of design

errors.
•David L. Parnas, A. John van Schouwen, and Shu PO Kwan. “Evaluation of

Safety-Critical Software.” Communications of the ACM, June 1990.

52

An interview with Watts Humphrey
(the “Father of Software Quality”)

Humphrey: . . . When you think about a big program, big complex system

program, 2 million lines of code something like that, and you run

exhaustive tests, what percentage of all the possibilities do you think

you’ve tested? Any idea?

Booch: Oh it’s going to be an embarrassingly small number probably in

the less than 20, 30% would be my guess. . .

Humphrey: You’re way off. Way off. I typically ask people and I get back

numbers 50%, 30%, that kind of thing. I asked the people at Microsoft, the

Windows people, what they thought. And then we chatted about it a bit

and they said about 1%.

Booch: Oh my goodness.

Humphrey: And my reaction is they’re high by several orders of

magnitude. . . the number of possibilities is so extraordinary you literally

couldn’t do a comprehensive test in the lifetime of the universe today.

“An Interview with Watts Humphrey, Part 26: Catastrophic Software

Failures and the Limits of Testing” Watts S. Humphrey and Grady

Booch, Aug 16, 2010, provided by the Computer History Museum.

53

Purpose of Testing

Assess quality. This is a tricky objective because quality is multi-

dimensional. . . For example, reliability is . . . about the number of

reliability-related failures that can be expected in a period of time or a

period of use. . .To make this prediction, you need a mathematically and

empirically sound model that links test results to reliability. Testing

involves gathering the data needed by the model. . .

Verify correctness of the product. It is impossible to do this by testing.

Assure quality. Despite the common title, quality assurance, you can’t

assure quality by testing. . .

Assess conformance to specification. . .

Find defects. . . the classic objective of testing. . . Generally, we look for

defects in all interesting parts of the product. . .

Kaner, C. “What Is a Good Test Case?” 2003.

54

Purpose of Safety-Specific Testing

In-Depth Safety-Specific Testing should clearly

demonstrate additional testing rigor.

Test cases should attempt to show that:

1) Causal Factor instances can be realized and

2) Identified Mitigations don’t work as intended

The test scenarios should include credible “load” or

“stress” relevant to the SSSF.

55

Types of In-Depth Testing

Boundary limit testing:

• Data range limits (e.g., highest or lowest possible values of a

safety-critical input, at or near zero, or near/at/over capacity limits

of a data storage).

• Timing limits (e.g., at the expiration of a timer or time limit).

Robustness testing:

• Response to abnormal inputs and conditions while ensuring safe

SSSF performance, e.g., high rates of new track acquisitions and

drop-outs.

Fault injection testing:

• Response to faults injected during SSSF performance.

Stress testing:

• Response to credible system stress during SSSF performance.

56

Safe state transition testing:

• Exercise all possible state transitions during SSSF performance.

Out of sequence testing:

• Software response to out-of-sequence inputs and conditions

while ensuring safe performance of the SSSF.

Out-of-range value testing:

• Assurance of safe performance of the SSSF in response to out-

of-range inputs or data values.

Error and exception handling testing:

• Response to errors and exceptions during SSSF performance.

Types of In-Depth Testing

57

Timing analysis testing:

• For safety-critical hard real time requirements, use targeted

load or stress testing of the time-critical SSSF functionality to

support the findings of timing analyses performed.

Algorithm correctness testing:

• Targeted stress testing of safety-critical algorithms associated

with the SSSF.

Independent test:

• Testing of prioritized SSSFs by an independent test team, if

determined to be needed by analysis.

Regression testing:

• Focused regression testing of SwCI 1 or 2 SSSF as determined

from changes to related functionality.

Types of In-Depth Testing

58

• Script a “Restrained Firing” in a Launcher followed immediately

by a communication failure and “hand-off” of the Launcher to the

alternate Launch Controller:

– See if all missile launches in the Launcher are “safed,” as

required after a Restrained Firing

• Script a second Launch Inhibit Command just as the first

Launch Inhibit Command timeout is occurring, which should

clear the first Launch Inhibit condition

• Script a “failover” of the primary Launch Controller to the

alternate Launch Controller just after a Launch Inhibit Command

has been processed.

• Script a “Restrained Firing” during a Max Launch test scenario.

Examples of In-Depth Testing

59

Requirements Analysis

60

Safety Requirements Analysis (SRA)

The safety requirements are the driving force behind a

designer’s ability to design safety into a system and its

subsystems. . .

From a safety perspective, there are three categories of

SSRs [software safety requirements] . . . contributing

software safety requirements (CSSR), generic software

safety requirements [GSSR], and mitigating software

safety requirements (MSSR).

[from the Joint Software System Safety Engineering Handbook (2010)]

61

Generic Software Safety Requirements

(GSSRs)

GSSRs are requirements that have been documented

over the years under the heading of lessons learned

and best practices. . . The requirements themselves are

not safety specific and may not yet be tied to a specific

system hazard.

[from the Joint Software System Safety Engineering Handbook (2010)]

62

Some Example GSSRs

• The Launcher software shall adhere to all MISRA

C++ guidelines for safety-critical software, with the

exception of those documented, with rationale for

non-compliance, in Table X.

• The Launcher software shall not perform dynamic

memory allocation, except during program

Initialization.

• The Launcher software shall not use C++ templates

for any safety-significant software data objects or

functions.

63

Contributing Software Safety

Requirements (CSSRs)

The CSSRs are requirements that should already exist

in the specifications and were likely authored by

someone other than a safety engineer. CSSRs are

related to the performance of the system to accomplish

its intended function or mission. These requirements

are not present for the mitigation or control of a hazard;

in fact, they will often contribute to the existence of a

hazard. An example of a CSSR is “Fire the Weapon.” . . .

[from the Joint Software System Safety Engineering Handbook (2010)]

64

• The Launcher shall power up the Missile for

preparation to launch on the receipt of a valid Missile

Select Command.

• The Launcher shall arm the Missile’s First Stage

Booster on successful completion of Launch

Preparation.

• The Launcher shall apply Ignition Power on detection

of all Missile-Launcher Ready to Launch conditions.

• The Missile shall arm the Warhead on detection of

Safe Separation from the Launch Platform.

Some Example CSSRs

65

Mitigating Software Safety

Requirements (MSSRs)

MSSRs are requirements derived from in-depth mishap

and hazard causal analyses. . . . the safety engineer

[performs] the safety analysis to determine whether the

GSSRs have successfully mitigated the known causal

factors of the mishaps and hazards. . .

MSSRs are usually authored by safety engineers, with

input and assistance from the design engineers and

domain experts associated with the design or

subsystem being analyzed. These MSSRs must be

added to the specifications . . .

[from Joint Software System Safety Engineering Handbook (2010)]

66

Some Example MSSRs

• The Launcher Deluge subsystem shall continuously

monitor for Canister and Launcher Overtemperature

and for Restrained Firing, and command Canister

Deluge on those Canisters effected by the

occurrence of any detected Hazards.

• The Launcher shall set a 75 second timer for the

completion of each Missile Launch Sequence, and

Safe any selected Missile that has not completed a

Launch within that time period.

67

Analysis of Requirements

Assess all tagged CSSRs/MSSRs for:

• Completeness

• Potential conflict with other requirements

• Ambiguity

.

68

• Potential conflicting requirements:

– Automated train doors must open only when train

is stopped and properly aligned with the platform.

– Automated train doors must open for evacuation in

the event of an emergency.

• Potential ambiguous requirement:

– Aircraft shall inhibit thrust reversal when the

aircraft is in flight.

Example Conflicting/Ambiguous

69

Architecture Analysis

70

Some Terminology
(from the JSSSEH and other sources)

Architecture: The organizational structure of a system

or component (IEEE 610.12 – 1990).

– ‘Architecture is concerned with the selection of architectural

elements, their interaction, and the constraints on those

elements and their interactions’ (Perry & Wolf, 1992, p. 40-

52).

– ‘Architecture focuses on the externally visible properties of

software “components”’ (Bass, Clements, & Kazman, 1998).

System Architecture: The arrangement of elements

and subsystems and the allocation of functions to meet

system requirements (INCOSE Systems Engineering

Handbook).

71

In control theory, open systems are viewed as interrelated

components that are kept in a state of dynamic

equilibrium by feedback loops of information and control.

. . . [A]ccidents often occur . . . as a result:

1. Incorrect or unsafe control commands are given

2. Required control actions (for safety) are not provided

3. Potentially correct control commands are provided at
the wrong time (too early or too late), or

4. Control is stopped too soon or applied too long.

Nancy G. Leveson, Engineering a Safer World: Systems Thinking Applied to Safety, 2011.

Safety in a Control System

72

The Classic “Control Loop”

Controller

Actuators Sensors

Process

Control Algorithms

Set Points

Controlled

Variables

Measured

Variables

Process

Inputs

Process

Outputs

Disturbances

73

• Treat each distributed SSSF as a control loop allocated

across the system architecture.

• Think of ways the control or feedback signals

(messages) might be corrupted, delayed or lost

(potential Causal Factors).

• For each of the Causal Factors identified, think of

existing or potential mitigations.

Inter-Process Architecture Analysis

74

System Path/Thread Analysis

for a ‘Safe Weapon’ SSSF

Operator CSCI 1 CSCI 2

[] Safe Wpn  [] []

[]

[]

[]

[]

Safe Wpn 

Ack/Nak

[]

[]

[] WILCO (or [] []

[] CANTPRO) [] []

CSCI = Computer Software Configuration Item

WILCO = “Will Comply”

CANTPRO = “Cannot Process”

Ack = ‘Valid’ Message Acknowledge

Nak = ‘Invalid’ Message (Negative) Acknowledge

Safe Wpn = Safe Weapon

75

More Robust ‘Architecture’

for a ‘Safe Weapon’ SSSF

Operator CSCI 1 CSCI 2

[] Safe Wpn  [] []

[] Ack/Nak [] []

[] [] Safe Wpn*  []

[] [] Ack/Nak []

[] [] HAVCO** []

[] HAVCO** [] []

[]

* CSCI 1 timer on

CSCI 2’s

HAVCO/CANTCO

response

[]

** or CANTCO

[]

CSCI = Computer Software Configuration Item

HAVCO = “Have Complied”

CANTCO = “Cannot Comply”

Ack = ‘Valid’ Message Acknowledge

Nak = ‘Invalid’ Message (Negative) Acknowledge

Safe Wpn = Safe Weapon

76

In systems theory, emergent properties, such as safety, arise from

the interactions among the system components. The emergent

properties are controlled by imposing constraints on the behavior

and the interactions among the components. Safety then becomes

a control problem where the goal of the control is to enforce the

system constraints. Accidents result from inadequate control or

enforcement of safety-related constraints on the development,

design, and operation of the system.

. . . Feedback is a basic part . . . of treating safety as a control

problem. Information flow is a key in maintaining safety.

Nancy G. Leveson, Engineering a Safer World: Systems Thinking Applied to Safety, 2011.

System-Theoretic Accident Model and

Processes (STAMP)

77

STAMP View of System Safety

Hazardous

Process

Hierarchical Safety Control Structure

Inadequate Enforcement

of Safety Constraints on

Process Behavior

Inadequate Control

Hazardous System State

From Figure 4-7 of Nancy G. Leveson,

Engineering a Safer World: Systems

Thinking Applied to Safety, 2011

78

General Control Loop with Causal Factors
(from Safety Assurance in NextGen, NASA/CR-2012-217553)

Control Algorithm

(Flaws in creation,

process changes

incorrect adaptation

or modification)

Inadequate

operation Inadequate

operation

Component failures

Changes over time

Control input or external

information wrong or missing

Received Control

Action (delayed,

etc.)
Provided Feedback

(Incorrect, no

information provided,

measurement

inaccuracies, delays)

Process input missing

or wrong

Process output contributes

to system hazard

Unidentified or out-of-

range disturbance

Conflicting control actions

Provided Control

Action

(inappropriate,

ineffective, or

missing)

Controller 2

Actuator

Controller

Controlled Process

Sensor

Process Model

(Inconsistent,

incomplete, or

incorrect) Received Feedback

(Inadequate, missing,

or delayed)

STAMP/STPA provides a good framework

for analyzing SSSF safety control.

79

Some Thoughts On STAMP, STPA, and

Meeting MIL-STD-882E Required LoR

We do not assign a SwCI because in STAMP software can and

should be treated in the same way as hardware, i.e., the hazards are

identified along with causal scenarios leading to the hazards. Then

engineers can eliminate or mitigate those causes according to

standard system safety practice and design precedence . . .

Nancy G. Leveson, “STPA (System-Theoretic Process Analysis) Compliance with Army Safety

Standards and Comparison with SAE ARP 4761,” a whitepaper on the compliance of STPA with

MIL-STD-882E and Army AMCOM Regulation 385-17.

80

Some Thoughts On STAMP, STPA, and

Meeting MIL-STD-882E Required LoR

We do not assign a SwCI because in STAMP software can and

should be treated in the same way as hardware, i.e., the hazards are

identified along with causal scenarios leading to the hazards. Then

engineers can eliminate or mitigate those causes according to

standard system safety practice and design precedence . . .

Nancy G. Leveson, “STPA (System-Theoretic Process Analysis) Compliance with Army Safety

Standards and Comparison with SAE ARP 4761,” a whitepaper on the compliance of STPA with

MIL-STD-882E and Army AMCOM Regulation 385-17.

THOUGHTS:

• STAMP/STPA is a very good framework for software safety

architecture analysis.

81

Some Thoughts On STAMP, STPA, and

Meeting MIL-STD-882E Required LoR

We do not assign a SwCI because in STAMP software can and

should be treated in the same way as hardware, i.e., the hazards are

identified along with causal scenarios leading to the hazards. Then

engineers can eliminate or mitigate those causes according to

standard system safety practice and design precedence . . .

Nancy G. Leveson, “STPA (System-Theoretic Process Analysis) Compliance with Army Safety

Standards and Comparison with SAE ARP 4761,” a whitepaper on the compliance of STPA with

MIL-STD-882E and Army AMCOM Regulation 385-17.

THOUGHTS:

• STAMP/STPA is a very good framework for software safety

architecture analysis.

• It would be a very “heavy lift” for an individual program or PFS to

make the case that STAMP/STPA is replacement for required LoR.

82

Some Thoughts On STAMP, STPA, and

Meeting MIL-STD-882E Required LoR

We do not assign a SwCI because in STAMP software can and

should be treated in the same way as hardware, i.e., the hazards are

identified along with causal scenarios leading to the hazards. Then

engineers can eliminate or mitigate those causes according to

standard system safety practice and design precedence . . .

Nancy G. Leveson, “STPA (System-Theoretic Process Analysis) Compliance with Army Safety

Standards and Comparison with SAE ARP 4761,” a whitepaper on the compliance of STPA with

MIL-STD-882E and Army AMCOM Regulation 385-17.

THOUGHTS:

• STAMP/STPA is a very good framework for software safety

architecture analysis.

• It would be a very “heavy lift” for an individual program or PFS to

make the case that STAMP/STPA is replacement for required LoR.

• My experience has been that MANY software problems are not at

the architecture level (and can’t be eliminated there).

83

Design Analysis

84

What is “Design”?

‘Design focuses on the properties of software

“components” that are not externally visible.’
[S. Whitford, 2015]

85

Design
What is NOT Externally Visible

What is NOT externally visible?

– The organization of elements inside each software component,

e.g.:

o Is it object oriented (Java, C++) or not (C, Assembler)?

o Is it single threaded or multi-threaded?

– The data flow between the elements inside each software

component, e.g.:

o Message passing

o Call parameters

o Global data

– The control flow between the elements inside each software

component, e.g:

o Procedure/function calls

o Semaphores/mutexes/monitors

86

• Most SwCI 1 or SwCI 2 SSSFs are safety-critical because the

software has command authority over a safety-critical system

action.

Safety-Critical Decision Points

87

• Most SwCI 1 or SwCI 2 SSSFs are safety-critical because the

software has command authority over a safety-critical system

action.

• The software is therefore responsible for making the decision to

take that action, often the release of lethal energy.

Safety-Critical Decision Points

88

• Most SwCI 1 or SwCI 2 SSSFs are safety-critical because the

software has command authority over a safety-critical system

action.

• The software is therefore responsible for making the decision to

take that action, often the release of lethal energy.

• If the data used to make the safety-critical decision is corrupted

or stale, the software can make the wrong decision with

catastrophic results.

Safety-Critical Decision Points

89

• Most SwCI 1 or SwCI 2 SSSFs are safety-critical because the

software has command authority over a safety-critical system

action.

• The software is therefore responsible for making the decision to

take that action, often the release of lethal energy.

• If the data used to make the safety-critical decision is corrupted

or stale, the software can make the wrong decision with

catastrophic results.

• Design (and Code) Analysis should be focused on how the

software maintains, or could fail to maintain, the integrity of the

data used at each Safety-Critical Decision Point in the SSSF.

Safety-Critical Decision Points

90

Is it safe to launch the missile?

– Was a valid Launch Command received from the Operator?

– Is the Cell Hatch fully open?

• Does the Cell Hatch No. 1 sensor report “open”?

• Does the Cell Hatch No. 2 sensor report “open”?

– Is the Uptake Hatch fully open?

• Does the Uptake Hatch No. 1 sensor report “open”?

• Does the Uptake Hatch No. 2 sensor report “open”?

– Has it been long enough since the last missile lunched?

– Is the Close-In Weapon System (CIWS) not currently firing?

(Implemented as a launchInhibited Boolean (TRUE/FALSE)

data item.)

SCDP: An Example

91

‘Launch Inhibited’ implemented

with multiple threads

Thread A:

[Launch Missile Command received]

boolean isMslLaunchOK ()

If . . . hatch statuses and

last missile launch time are “ok”

. . . && (launchInhibited == FALSE)

return TRUE

else

return FALSE

launchInhibited is set to TRUE when a CIWS engagement is about to start.

92

‘Launch Inhibited’ implemented

with multiple threads (cont’d)

Thread B (higher priority):

[Launch Inhibit Command

received]

. . .

setLaunchInhibit ()

. . . if old timer active, cancel it

. . . launchInhibited = TRUE

. . . Initiate a 20s timer to clear

inhibit

Thread C (lower priority):

[20s Launch Inhibit timer

expires]

. . .

clearLaunchInhibit ()

. . . launchInhibited = FALSE

Intent is to clear a pre-existing Launch Inhibit condition after 20 seconds.

93

Analysis of ‘Launch Inhibited’

Thread B (higher priority):

[Receipt of new Launch

Inhibit command unblocks

thread]

. . .

setLaunchInhibit ()

. . . if old timer active, cancel it

(but, it’s too late)

. . . launchInhibited = TRUE

. . . Initiate a (new) 20s timer

[thread blocks on task

completion]

Thread C (lower priority):

[Old 20s Launch Inhibit

timer expires]

. . .

clearLaunchInhibit ()

. . . launchInhibited = FALSE

Timer intended to clear OLD Launch Inhibit condition clears NEW one instead!.

A data synchronization mechanism should be used to protect the shared data item.

94

Establish the pros and cons of the design of each

software component to which the SSSF is allocated

and determine whether they could be Causal Factors or

Mitigations for a SSSF functional failure due to an

erroneous Safety-Critical Decision by the software. (It’s

all about the safety-critical data integrity.)

Some Sources of

Design Causal Factors

95

Establish the pros and cons of the design of each

software component to which the SSSF is allocated

and determine whether they could be Causal Factors or

Mitigations for a SSSF functional failure due to an

erroneous Safety-Critical Decision by the software. (It’s

all about the safety-critical data integrity.)

Design weaknesses with respect to data integrity, e.g.:

• Shared data “race conditions”

• Loss of data in software “failovers”

• Failure to refresh temporal data

• Unhandled exceptions

Some Sources of

Design Causal Factors

96

Multi-(two)threaded Design

Thread B

• stack

Thread A

• stack

Variables or objects in the heap or data can be shared by the

threads. This can lead to race conditions or thread deadlock.

(Text can also be shared, but (usually) does not change in

value.)

shared resources

• heap

• (global) data

• text

Process

Single, shared address space

97

Pros and Cons of

Multi-threaded Design

Pros for multi-threaded design:

• Allows software to be more responsive to an unpredictable

external environment (new inputs from an operator, another

computer, or a sensor)

• Each thread can be ‘appropriately prioritized’

Cons for single threaded design:

• Improperly synchronized threads can corrupt shared data

• Improperly synchronized threads can deadlock (block each

other forever)

• Improperly prioritized threads can cause starvation or

unpredictable delays

• Much more difficult to analyze or test than single-threaded

designs

98

‘Concurrency in software is difficult. However, much of

this difficulty is a consequence of the abstractions for

concurrency that we have chosen to use. The dominant

one in use today for general-purpose computing is

threads. But non-trivial multi-threaded programs are

incomprehensible to humans.’

[The Problem with Threads, Technical Report No. UCB/EECS-2006-1, Edward A.

Lee, Professor, Chair of EE, Associate Chair of EECS, University of California at

Berkley, January 10, 2006]

On the Difficulties with Multi-threading

99

Single Threaded Design

A (usually infinite) loop, for an embedded program to “do its thing

forever.”

– Checks for input(s) [e.g., messages, sensor inputs]

– Performs any necessary processing of the input(s)

– Produces output(s) [e.g., messages, actuator control signals]

Example:

int main(void)

{ // initialization code here – done once

for (; ;) // or while (true) or while (1)

{ // read or detect stuff

// do some calculation

// write or command stuff

}

}

Thread

100

Pros and Cons of

Single Threaded Design

Pros for single threaded design:

• Easier to perform analysis (e.g., design, code, worst case

timing)

• Easier to implement the first time

Cons for single threaded design:

• Delay in responding to external inputs

• Can become a bottleneck in the larger system

• Hard to prioritize multiple competing “tasks”

• Must implement the details for handling all I/O

• Becomes hard to maintain as more functionality is added

101

Single Threaded Design

With Interrupt Service

Process’s

‘main’ thread

Internal

interrupt

service

External

interrupt

service

Shared data

and resources

Shared data

and resources

Shared data

and resources

• With few exceptions, Interrupt Service Routines (ISRs) should be short

and sweet. For input, read the data into a buffer or queue, set a flag for

‘main’ to see, then get out of the way (let ‘main’ process the data).

• Non-atomic access by ‘main’ to data shared with an ISR must be

protected from potential corruption (e.g., locking out the interrupt that

drives the ISR while ‘main’ is reading from or writing to the shared data).

102

Pros and Cons of

Design With Interrupt Service

Pros for single threaded design with interrupt service:

• Somewhat more responsive to external inputs

• Relatively easy to perform analysis (e.g., design, code, worst

case timing)

• Still easy to implement the first time

Cons for single threaded design with interrupt service:

• Delay in responding to external inputs

• Main loop can still become a bottleneck (input queue

overflow, delay in responding to external system)

• Still hard to prioritize multiple competing “tasks”

• Potential for corrupting data shared between ISRs and ‘main’

• Still hard to maintain as more functionality is added

103

Details of Pulse Width Modulation

(Mis-)handled in the ISR

‘main’ thread

ISR to

handle

PWM

Shared data

and resources

• A Programmable Power Supply was implemented so that almost all

processing of sensors and control commands for pulse-width

modulation (PWM) of the power output to power up missiles in a

launcher for preparation to launch was performed inside the ISR.

• When a new missile was introduced, the interrupt occurred every 10 u-

sec’s and the ISR to 11 u-sec’s to execute the additional processing for

the power requirements for the new missile’s launch preparation.

104

An ISR / ’main’ example

of non-atomic data sharing

‘main’ thread

ISR for

reading

the IMU

New IMU data

passed to ‘main’

• Non-atomic access by ‘main’ to data shared with an ISR must be

protected from potential corruption (e.g., locking out the interrupt that

drives the ISR while ‘main’ is reading from or writing to the shared data).

• Inertial Measurements include several values - linear accelerations (x,

y, and z) and rotational measurements (about each axis). Is the IMU

ISR locked out while ‘main’ is reading the shared IMU data?

105

Code Analysis

106

Code Analysis vs. Design Analysis

The difficulty of using the term "design" in relation to

software is that in some sense, the source code of a

program is the design for the program that it produces.

[Wikipedia article on “Software Design,” February 7, 2015]

107

Focus for LoR 1 Code Analysis

SwCI 1 code is typically responsible for releasing potentially

catastrophic energy or for detecting a potentially catastrophic

hazardous condition. Either way that usually involves one or more

Safety-Critical Decision Points (SCDPs) in the software. These

SCDPs use one or more software data items to make the decision.

• Focus code analysis on identification of internal data items

used by software to make critical decisions to perform a

safety-critical action or not.

o Scope may expand as analysis progresses.

• Investigate how a data item’s value is set and referenced by

the software.

• Static or dynamic code analysis tools should be used for a

detailed analysis and to document important technical

aspects.

108

Program Slicing

In computer programming, program slicing is the

computation of the set of programs statements, the

program slice, that may affect the values at some

point of interest, referred to as a slicing criterion.

Program slicing can be used in debugging to locate

source of errors more easily. Other applications of

slicing include software maintenance, optimization,

program analysis, and information flow control.

[Wikipedia article on “Program Slicing,” March 17, 2015]

109

Some Code Analysis Tools

Tools to help an analyst explore the code:

– Eclipse (Java, C/C++) (Open Source Software)

– NetBeans (Java, C++)

– Understand for C++/Java (SCI Tools)

Tools to do automated static code analysis:

– CodeSonar (GrammaTech)

– Klocwork (Rogue Wave)

– Code Advisor (Coverity)

– PC-lint (Gimpel Software)

110

Code Analysis

1.For each SwCI 1 SSSF, identify and locate the SCDPs

associated the SSSF.

2.Using appropriate automated or semi-automated code

analysis tools, perform a “backward flow” analysis of

the code from safety-critical decision points in the

software.

3.Based on the results of the Requirements, Architecture,

and Design Analyses, perform other appropriate code

analyses, especially analysis of the implementation of

safety critical mitigations for the SSSF.

111

Code Analysis
-- Step 1 --

1. For each SwCI 1 SSSF, identify and locate the

SCDPs associated the SSSF.

• Locate the code that performs energy release. e.g.,

weapon firing, detonation, booster ignition. (potential

Causal Factor) or that detects and responds to a

hazardous condition.

112

An Example L-DETS SCDP

Source code for safety-critical function SetFirePulse and associated functions in file SafetyCritical_RX.c

//**

// @Function void SetFirePulse(void)

//--

// @Description This function applies a 30 millisecond firing Pulse to detonate the unit.

//**

void SetFirePulse(void)

{

if(G_SCV.SC_DisableSafetyCriticalProcessing == SC_PROCESSING_ENABLED)

{

if(IsArmPinRemoved() == ARM_PIN_HAS_BEEN_REMOVED)

{ // When pin is pulled we get a high

FIRE_PULSE_PORT = 1;

G_SCV_PortFImage |= FIRE_PULSE_BIT;

G_SCV.SC_DetonatorHasFired = DETONATOR_HAS_FIRED;

DelayMilliSecondsNoInterrupt(30);

SetToSafeState();

}

}

}

Is detonation currently enabled?

113

Code Analysis
-- Step 2 --

2. Using appropriate automated or semi-automated

code analysis tools, perform a “backward flow” analysis

of the code from safety-critical decision points in the

software.

• The analysis should focus on identifying potential

causes of stale or corrupt data being present at the

safety-critical decision point.

114

An Example L-DETS SCDP (cont’d)

Control Flow Analysis: How is SetFirePulse called in the L-DETS Detonator software?

SetFirePulse is only called from the function DetonateUnit, which is called on two

paths within the “main” thread: one if the Fire Command is received directly from

the Controller and the second if it has been forwarded from another Detonator.

115

An Example L-DETS SCDP (cont’d)

Data Flow Analysis: Where/how is SC_DisableSafetyCriticalProcessing updateded?

SC_DisableSafetyCriticalProcessing is only enabled and disabled at

five locations in the software. Understanding the purpose and use of

each location is needed to assess for potential weaknesses or problems..

Blue highlighting indicates SC_DisableSafetyCriticalProcessing is referenced but not changed.

116

An Example L-DETS SCDP (cont’d)

Data Flow Analysis: Where/how is SC_DisableSafetyCriticalProcessing updateded?

SC_DisableSafetyCriticalProcessing is only enabled at two locations in

the software.

Blue highlighting indicates SC_DisableSafetyCriticalProcessing is referenced but not changed.

117

Code Analysis
-- Step 3 --

3. Based on the results Requirements Analysis, Architecture

Analysis, or Design Analysis, perform other appropriate code analyses

that might have potential safety-critical impacts, such as:

– Timing analysis – for safety-critical hard real time requirements,

using appropriate static or dynamic code analysis tools to analyze

the worst case execution time (WCET).

– Interrupt analysis – analysis of the coordination of interrupt

handling with interruptible and non-interruptible safety-critical

processing.

– Algorithm correctness – analysis of the correctness of the

implementation of any safety-critical algorithm(s)..

– Data structure/usage analysis – analysis of the structure and

use of safety-critical data objects associated with the SSSF.

– OS function analysis - analysis of correct use of OS functions

used to implement LOR 1 functionality for the SSSF.

118

Wrap Up

119

Some Key Points

• Purpose of LoR is to focus and manage

120

Some Key Points

• Purpose of LoR is to focus and manage

• Software FHA should:

o Be performed as early as reasonable

o “Rack and stack” SSSFs by SwCI/LoR

o Identify potential redundancies to reduce SwCI 1

SSSFs

121

Some Key Points

• Purpose of LoR is to focus and manage

• Software FHA should:

o Be performed as early as reasonable

o “Rack and stack” SSSFs by SwCI/LoR

o Identify potential redundancies to reduce SwCI 1

SSSFs

• Requirements analysis should focus on:

o Incompleteness

o Ambiguities

o Conflicts

122

Some Key Points

• Architecture analysis should focus on weaknesses

in the command and control of distributed Safety-

Significant Software Functions

123

Some Key Points

• Architecture analysis should focus on weaknesses

in the command and control of distributed Safety-

Significant Software Functions

• Design and code analysis should focus on Safety-

Critical Decision Points (can the internal data items

used by the software be corrupted or stale)

124

Some Key Points

• Architecture analysis should focus on weaknesses

in the command and control of distributed Safety-

Significant Software Functions

• Design and code analysis should focus on Safety-

Critical Decision Points (can the internal data items

used by the software be corrupted or stale)

• In-Depth Safety-Specific Testing should be derived

from the analysis results

125

Some Key Points

• Architecture analysis should focus on weaknesses

in the command and control of distributed Safety-

Significant Software Functions

• Design and code analysis should focus on Safety-

Critical Decision Points (can the internal data items

used by the software be corrupted or stale)

• In-Depth Safety-Specific Testing should be derived

from the analysis results

• All analyses and testing should be focused on

Causal Factors and Mitigations

