A Developing Science of Cyber Security – an Opportunity for Model Based Engineering & Design

October 26, 2017

Jerry M. Couretas, PhD

About Me - Cyber Modeling and Simulation

- 2016 presentOSD C3CB Cyber Mission Model and Economics of Cyberspace Performance Working Group Lead
- 2013 2016 Coordinated OSD DM&SCO Cyber M&S Technical Working group for
- Editor-in-Chief of the Journal of Defense Modeling and Simulation
 - 7/2017 Cyber M&S Special Issue
 - 1/2018 Cyber Special Issue on Developing Science of Cyber Security

Hackers Are Targeting Nuclear Plants, U.S. Says

By NICOLE PERLROTH

Since May, hackers have been penetrating the computer networks of companies that operate nuclear power stations and other energy facilities, as well as manufacturing plants in the United States and other countries.

Among the companies targeted was the Wolf Creek Nuclear Operating Corporation, which runs a nuclear power plant near Burlington, Kan., according to security consultants and an urgent joint report issued by the Department of Homeland Security and the Federal Bureau of Investigation last week.

The joint report was obtained by The New York Times and confirmed by security specialists who have been responding to the attacks. It carried an urgent amber warning, the second-highest rating for the severity of the threat.

The report did not indicate whether the cyberattacks were an attempt at espionage — such as tealing industrial secrets — or art of a plan to cause destruction. There is no indication that hackrs were able to jump from their ictims' computers into the con-

The Wolf Creek nuclear plant in Kansas in 2000. Its operator was targeted by hackers.

cause of confidentiality agreements.

The origins of the hackers are not known. But the report indidirected their victims' internet traffic through their own machines.

Energy, nuclear and critical manufacturing organizations

"We never anticipated that critical infrastructure control s tems would be facing advan levels of malware," Wellinghoff said.

Electri-	Gas	Rail-	ICT	Urban
city		ways	10795000	Water

Complexity	Physical			
	Organisational			
	Speed of change			
Dependence {interconnected-	On other Infrastructures			
ness)	For other Infrastructures		2	
	Intra-infrastructure			
	ICT control			
Vulnerability	External impact*			
	Technical/human failure			
	Cyber attacks			
	Terrorist target			
Market	Degree of liberalisation			
environment	Inadequacy of control			
	Speed of change			

Degree of	Scope"		1	
criticality -	Magnitude		2.2	
factors	Effects of time			

Overall degree of criticality

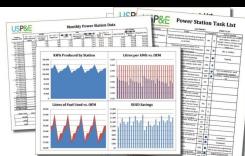
Cyber in the News (Stoplight Charts)

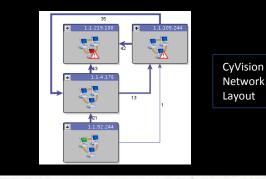
M&S Work

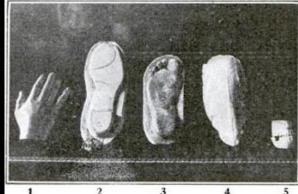
NASA Technological Readiness Levels (TRLs)

Contents

- Science of Cyber Security
- Developing Communities
- Cyber Risk Evaluation & Assessment
- Cyber Model Example
- Current Evaluations
- Developing Work
- Wrap Up

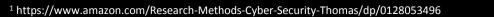

Contents

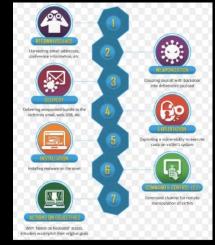

- Science of Cyber Security
- Developing Communities
- Cyber Risk Evaluation & Assessment
- Cyber Model Example
- Current Evaluations
- Developing Work
- Wrap Up


The Scientific Underpinnings of Cybersecurity¹

A science of security will develop

- a body of scientific laws
- testable explanations
- confirmation or validation of predicted outcomes

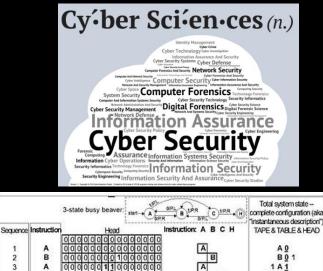



Plaster casts made in European detective laboratories in order to study crime scientifically

Scientific Approach to Cybersecurity

- There are strong and well-developed bases in the contributing disciplines:
- mathematics and computer science
- human sciences¹
- A scientific approach to cybersecurity challenges expands understanding of
- systems
- defenses
- attacks
- adversaries

National Academy of Science & Cyber Research


Findings included

- Interdisciplinary program examples U of Bochum
- Questions current research
 - High frequency publishing vs quality
 - Enabling results
- Longer research projects may help

Example Transitions from Art to Science

Cyber Security Science

- 1700s–1960s complex industrial systems with integrated timing handled by respective operators
- 1960s 1980s Systems Theory (e.g., Wymore, Zeigler ...) _ texts introduced
- 1990s 2000s micro computers increased number of entities to point where scale and scope of new systems introduce overall security / safety issues
- Early 2000s present "cyber" introduced as topic in security circles
- Next step?
- **Computer Science**
 - Pre History 1930s "computer" was a person who used various devices (e.g., Abacus, analytical engine, etc.)
 - 1930s 1950s algorithms (e.g., Church-Turing, ...), N. Wiener's "Cybernetics," identified as independent domain
 - 1950s 1970s development of computer science curricula and specialized literature (e.g., first PhD ~ 1965)
 - 1970s present "Computer Science" with provable hypotheses
- **Material Science**
 - Pre History to 17th Century Alchemy
 - 17th Century 1960s Metallurgy
 - 1960s present Material Science
 - Still recipe based

1100

111B11

111B0

111A0

2

3

4

5

6

8

9

10

11

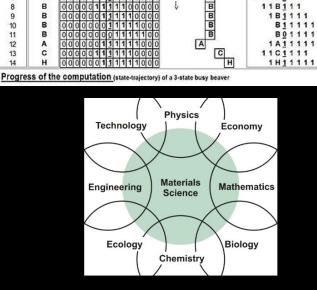
12

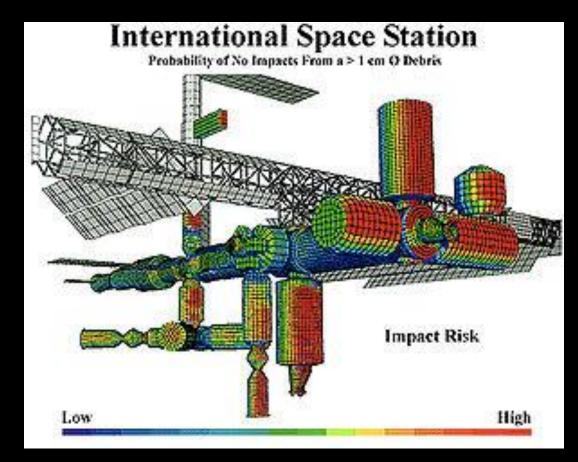
13

C

в

A

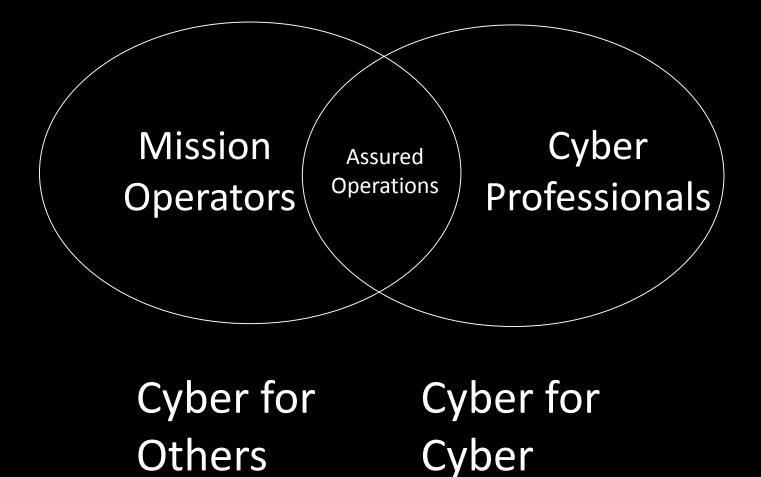

в


0000011000000000

0000111000000000

00011110000000000

0000111111000000


We have built high risk, complex systems, for new domains

Hard Problems are what M&S is For

Contents

- Science of Cyber Security
- Developing Communities
- Cyber Risk Evaluation & Assessment
- Cyber Model Example
- Current Evaluations
- Developing Work
- Wrap Up

Cyber Mission M&S Communities

Cyber for Others, C4O
Recognise cyber attack indicators
React – call C4C

- Cyber for Cyber, C4C
- Block network attacks
- Mitigate network attacks
- Reconstitute networks

Military Activities & Cyber Effects (MACE)¹

Military Effects(C4O)

	Deny	Degrade	Disrupt	Destroy	Digital Espionage
Interruption	>	×	~	×	×
Modification	>	>	~	~	×
Degradation	×	>	~	×	×
Fabrication	>	>	×	×	~
Interception	×	×	×	×	~

Cyber Effects (C4C)

¹ Bernier, M. (2015). *Cyber Effects Categorization - The MACE Taxonomy*. DRDC Center for Operational Research and Analysis. TTCP JSA TP3 Cyber Analysis

Example Cyber Mission Use of Standards

- OASIS standards address IA to protect
 - CybOX (Cyber Observable eXpression)
 - STIX (Structured Threat Information eXpression)
 - TAXII (Trusted Automated eXchange of Indicator Information)
- Cyber Range Interoperability Standard (CRIS) to <u>connect</u> different range emulations¹
 - SISO Training Standards

Contents

- Science of Cyber Security
- Developing Communities
- Cyber Risk Evaluation & Assessment
- Cyber Model Example
- Current Evaluations
- Developing Work
- Wrap Up

2015 Business Blackout

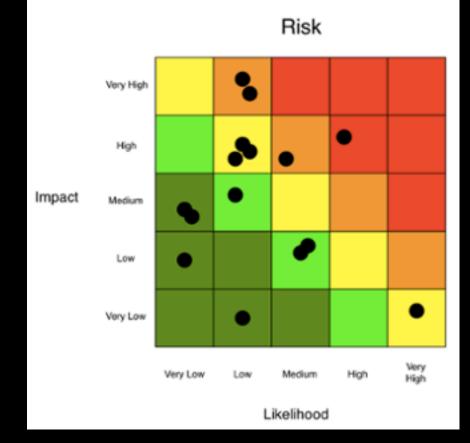
Lloyd's of London scenario looked at a U.S. power grid failure

¹ https://www.lloyds.com/news-and-insight/risk-insight/library/society-and-security/business-blackout

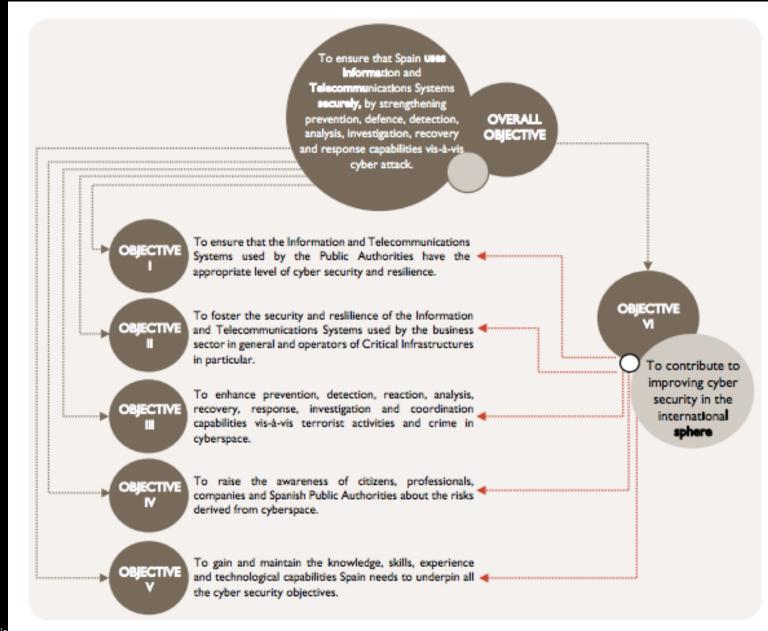
... and, while a major cyber attack is unlikely ...

Cyber attacks, including against industrial control systems, are a continuing phenomena

Dete	Event name	Detailed description	Actors	Motivation	Methodology	Outcome
April 1999 Milhorn, 2007)	Gazprom – Russian gas supplier	A Trojan was delivered to a company insider who opened it deliberately. The control system was under direct control of the attackers for a number of hours.	Tangeted Actack & Insider	Sabotage & Ransom	Trojan & Insider	Unauthorised Access
luly 1999 (National Safety Transport Board, 2002) Wilshusen, 2007)	<mark>Bellingham</mark>	Over 250,000 gallons of gasoline leaked into nearby creeks and caught on fire, Large smount of property demage, three deaths and eight others injured. During the incident the control system was unresponsive and records/logs were missing from devices.	Accident	Urknown:	Accidental	Physical Demage and Bodily mury
Feb, and April 2000 (JII Slay, 2008) (Wilshusen, 2007)	Marcochyshire	A recently fired employee sabotaged table communications and released 800,000 gallons of raw sewage into parks, rivers and the grounds of a hotel.	Insider attack	Sabotage	Radio man- in-the-middle	Physical Demage
May 2001 (US House of Representatives, 2005 (SCADA) ¹⁰ Systems and the Ternorst Threat Protocling the Nation's Critical Control Systems, 2005	California	A necking incident at California Independent System Operator (CASO) lasted two weeks, but did not cause any damage.	External attack	Unknown and contained	Deliberate	Thwartod
August 2006 (GAC) Report, 2007)	Daimlen Chrysler	Thirteen Daimler-Chrysler US auto manufacturing plants were taken offline for about an hour by an internet worm. An estimated \$14m in downtime costs		Spyware Installation	Zotob Worm and MS05-039 Plug n-Play	Infection
infection	Brown's Ferry	Loss of recirculation flow on a US nuclear reactor down for marromence caused a manual scram. A worm exploited a buffer overflow flow in the widely used MSSQL server during the scram.		Unknown	Stammer Worm and Buffer Overflow	Non-industrial control systems targets
Oct 2006 (Wilshusen, 2007)	Harrisburg	Heckers gamed access to a water treatment prent through an infected laptop.	Targeted Threat Agent	Mischief	Compromised Laptop	Server used to run online games
Jan 2008 (Maras, 2012)	Lodz	Attacker built a remore control device to control trains and tracks through distributed field devices. Four trains were derailed with zero deaths. A disgruntled employee installed melicious code on a canel control system.	Targeted Threat Actor, Accident or Insider Attack	Mischief	Altered Universal Remote	Mayhem, Criminal Damage
ian 2008 (Knapton, 2008)	Kingsnorth	Attacker broke into the E.ON Kingsnorth power station which caused a 500MW turbine to take an emergency shutdown.	Targeted Threat Actor	Sabotago	Physical Penetration	Environmental Protest


Insurance Concepts & Systems Engineering for Cyber

- Böhme & Schwartz (2010) provide an excellent summary of cyber insurance literature and define a unified model of cyber insurance that consists of 5 components:
 - the networked environment
 - demand side
 - supply side
 - information structure
 - organizational environment
- In addition, the defining characteristics of cyber insurance are
 - interdependent security
 - correlated failure
 - information asymmetry

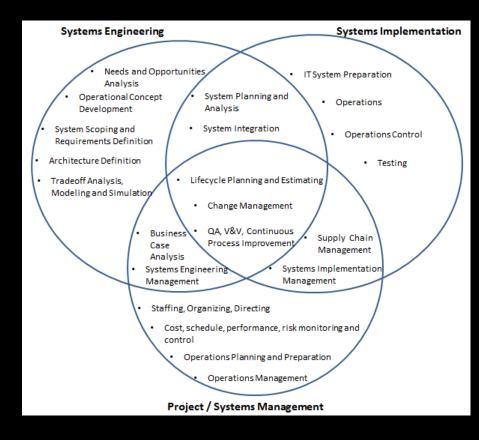

Example Cyber Measurement Models

 Factor Analysis of Information Risk (FAIR) Model ¹

 "How to Measure Anything in Cyber Security Risk"²

1 2

¹ https://www.enis

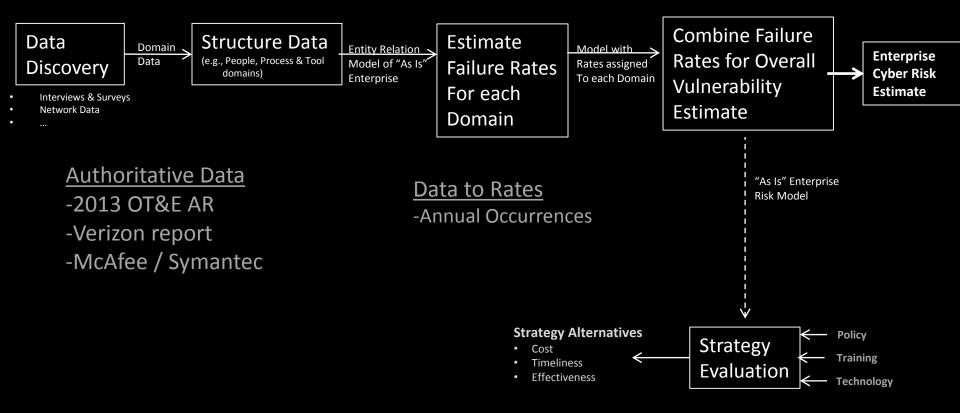

Contents

- Science of Cyber Security
- Developing Communities
- Cyber Risk Evaluation & Assessment
- Cyber Model Example
- Current Evaluations
- Developing Work
- Wrap Up

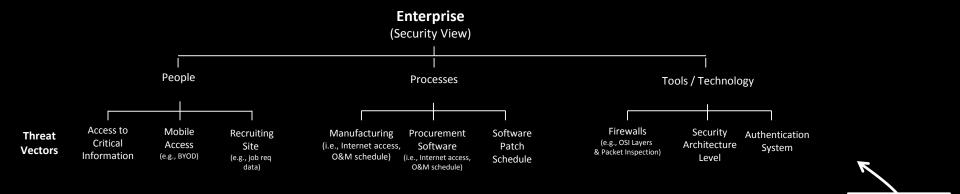
Cyber Model Example -Introduction

Build Enterprise
 Description Model

Use Analytic Model


Enterprise Model

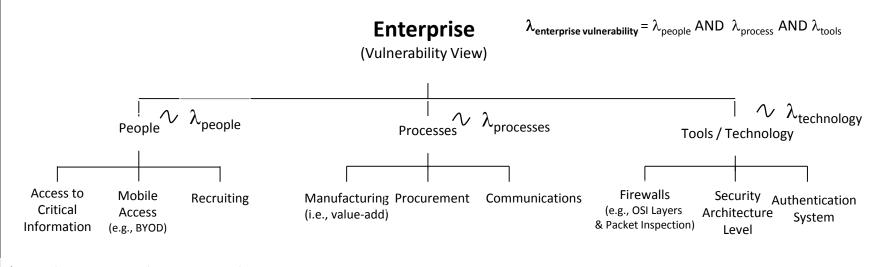
People manage enterprise due to the scope of information


Enterprise Model Construction & Evaluation

Metrics

-Dollar quantifiable (e.g., Target, Nieman Marcus ...) -Media quantifiable (e.g., Snowden, Manning) – number of articles / exposure

Enterprise Model (Populate with known Data) People, Processes & Tools from Surveys / Interviews

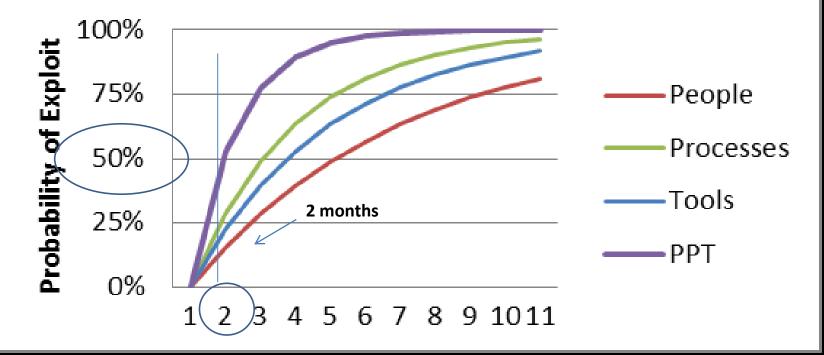


Q&A to Static Enterprise Model

Use the Q&A process to develop an information structure amenable to modeling:

	People	Processes	Tools
Who	System Access		User Authentication
What	Personally Identifiable Information (PII)Social Media	Critical InformationHigh Volume (e.g., manufacturing)	
When	System Access	Maintenance SchedulePatch ScheduleSoftware Updates	
Where	Fixed SiteMobile		
Why	Business System accessTechnology System Access		Secure Sockets Layer (SSL)
How	RecruitingScreening		Security Architecture LevelFirewall – monitoring & control

Enterprise Model & Parameterization (organize respective failure rate estimates)

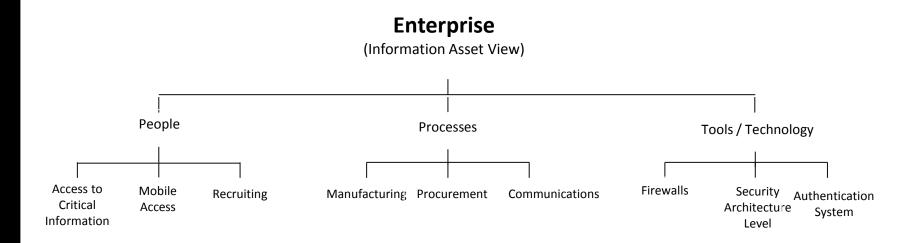

 $[\]lambda_{people} = \lambda_{crit info access}$ AND $\lambda_{mobile access}$ AND $\lambda_{recruiting}$

- λ is the failure rate for the respective domain (e.g., people, process, tool) or one of its components
- Exponential distribution results in "additive" combination of failure rates over the heterogeneous data for the respective domains

"As Is" Risk Estimation

(Strategy – "Do Nothing")

Time (months) vs. Mean Time to Exploit (MTTE) (Strategy : <u>Do Nothing</u>)



Example Countermeasures as Work Packages

Packages / Domain & Work Package		Cyber Enterprise Domain Affected by Work Packages			Work Package Time / Cost Estimate		
Work Packages		People (λ _{people})	Process ($\lambda_{process}$)	Tool (λ _{tool})	Implementation Time	Cost (\$ K)	
	Access	•	0	0	months	10's	
Policy	Mobile Device	•	•	•	months	10's	
	Critical Information	•	•	0	months	10's	
	Phishing	•	0	0	weeks	10's	
Training	Internet Use	•	0	0	weeks	10's	
	Social Engineering	•	•	0	weeks	10's	
	Firewalls	0	•	•	days	100's	
Technology	M&C	0	0	•	days	100's	
	Authentication	•	0	•	weeks	100's	

- Work Packages provided as policy / training / technology "fixes" and affect cyber enterprise domains (i.e., people, processes and tools) independently
- Independent Work Package provision results in ready project plans in terms of time and cost estimates for improving enterprise resiliance

Model Based Knowledge based

¹ "Artificial Intelligence and National Security" (http://www.belfercenter.org/sites/default/files/files/publication/AI%20NatSec%20-%20final.pdf)

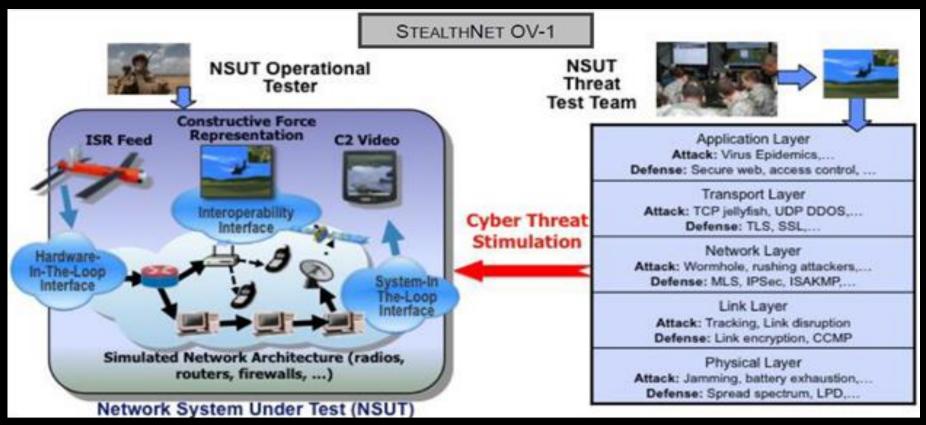
Contents

- Science of Cyber Security
- Developing Communities
- Cyber Risk Evaluation & Assessment
- Cyber Model Example
- Current Evaluations
- Developing Work
- Wrap Up

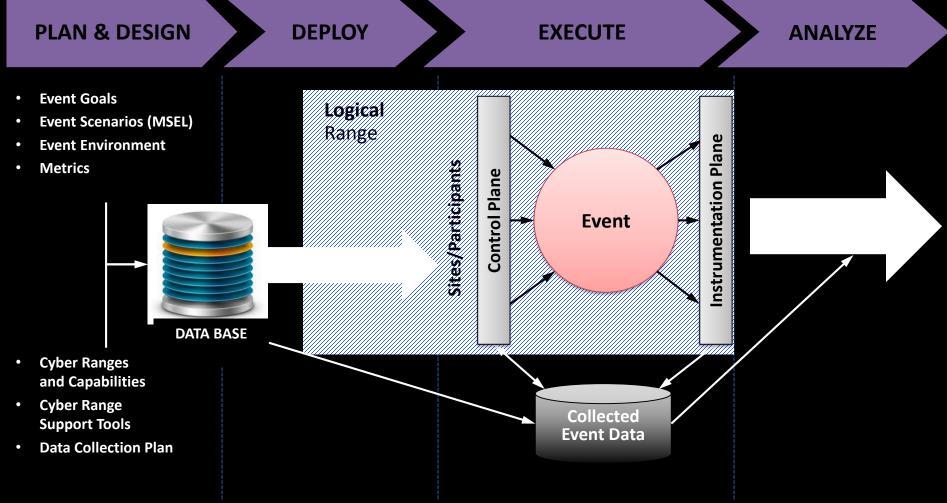
Nissan Quest / Ford Villager

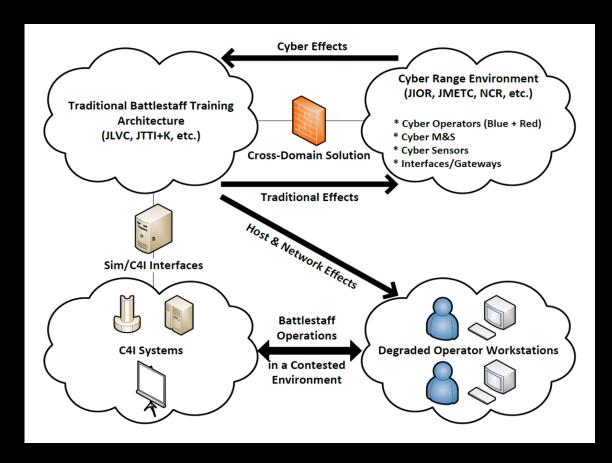
- 7 Prototype builds
- 1000s of hours of testing / evaluation

Death Valley Hot Weather Testing



Bemidji MN Cold Weather Testing


Cyber M&S / Test Example

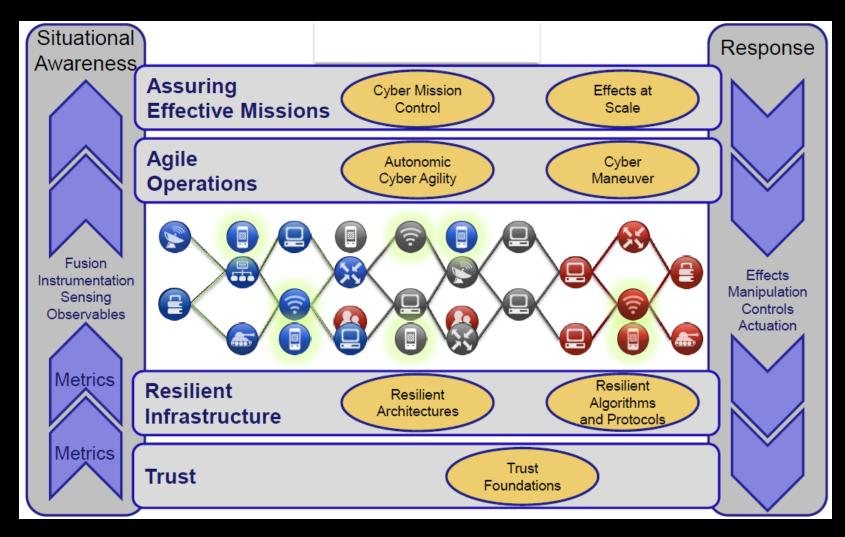

Network Emulation (StealthNet) injection into Network System Under Test (NSUT)¹

¹ http://www.dtic.mil/ndia/2012/system/ttrack514951.pdf

Cyber-Range Event Process Overview

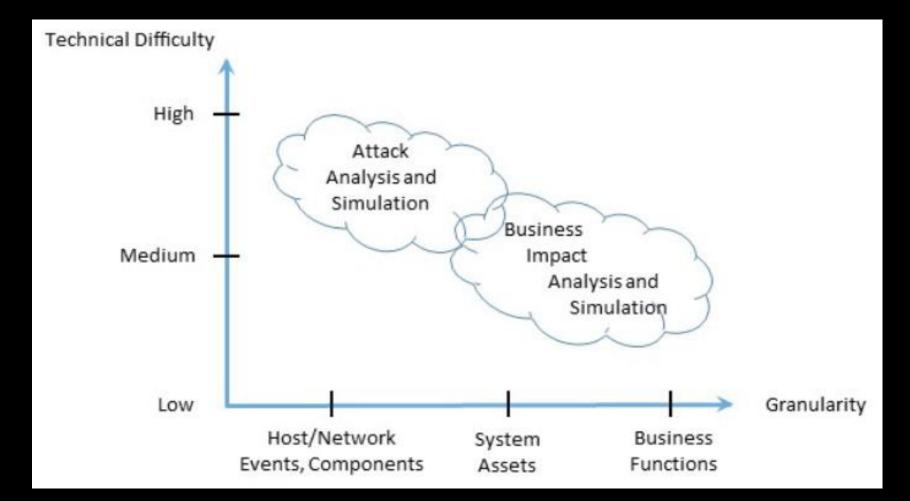
Cyber Operations Architecture Training System (COATS)¹

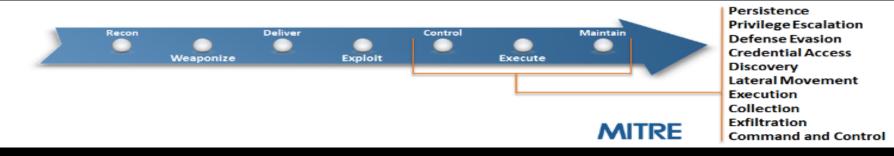
Inject Cyber Range effects into Command Staff training simulations


¹ 2015 I/ITSEC Best Paper (http://www.iitsec.org/about-iitsec/publications-and-proceedings/best-papers-and-tutorials-from-past-iitsec)

"I'm no expert, but I think it's some kind of cyber attack!"

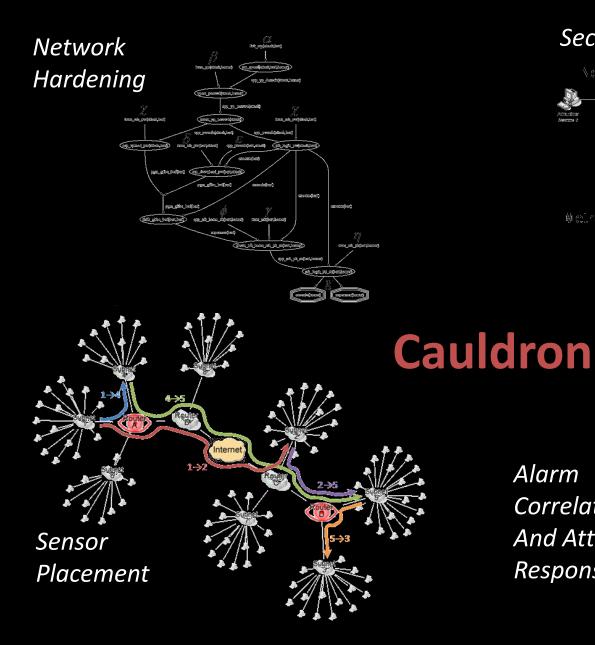
Contents


- Science of Cyber Security
- Developing Communities
- Cyber Risk Evaluation & Assessment
- Cyber Model Example
- Current Evaluations
- Developing Work
- Wrap Up

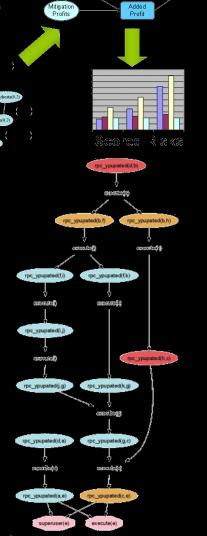

Cyber Mission Representation (DoD SBIR Conf – 2013)

¹ https://www.dhs.gov/sites/default/files/publications/csd-sbir-2013-drsteven-king.pdf

Two major subspaces of cyber M&S problems



MITRE & ATT@CK Framework¹


- ATT@CK provides decomposition of cyber attack cycle
- CARET² expands ATT@CK to give more context on tactics, tools and threat groups

🗅 caret 🛛 🗙											05 jerry
← → C a Secure https://car.mitre.org/caret/	#/									1	: 🛛 🖉 :
ATT&CK MAPPING EXPLORE NETWORKS											
Detailed grid Enable outlines		Command and Control	Exfiltration	Credential Access	Persistence	Collection	Defense Evasion	Discovery	Privilege Escalation	Lateral Movement	Execution
Select group		Data Obfuscation	Data Compressed	Credential Dumping	Winlogon Helper DLL	Data from Local System	File System Logical	System Service	Local Port Monitor	Application Deployme	Windows Remote
		Fallback Channels	Exfiltration Over Othe	Network Sniffing	Local Port Monitor	Data from Removabl	Binary Padding	Application Window	Accessibility Features	Remote Services	Service Execution
Search Analytics		Custom Cryptograp	Automated Exfiltration	Input Capture	Accessibility Features	Data from Network	Rootkit	Query Registry	Path Interception	Windows Remote	Windows Manageme
	_	Multiband Communicatio	Data Encrypted	Exploitation of	Basic Input/Outp	Input Capture	Obfuscated Files or	Local Network	DLL Search Order	Logon Script	s Scheduled Task
		Standard Cryptograp	Scheduled Transfer	Credentials in Files	Shortcut Modification	Data Staged	Masqueradinç	Remote System	File System Permissio	Shared Webroot	Command- Line Interface
SELECT ALL CLEAR ALL		Commonly Used Port	Data Transfer Size Limits	Credential Manipulation	Modify Existing	Screen Capture	DLL Search Order	System Owner/Us	New Service	Exploitation of	Graphical User Interface
		Uncommonly Used Port	Exfiltration Over	Brute Force	Path Interception	Email Collection	Software Packing	Network Service	Scheduled Task	Third-party Software	Scripting
Autorun Differences CAR-2013-01-002		Standard Applicatio	Exfiltration Over	Two-Factor Authenticat	Logon Scripts	Clipboard Data	Indicator Blocking	Local Network	DLL Injection	Pass the Has	h Third-party Software
SMB Events Monitoring CAR-2013-01-003	_	Multilayer Encryption	Exfiltration Over Physic		DLL Search Order	Automated Collection	DLL Injection	Process Discovery	Service Registry	Remote Desktop	Rundll32
		Connection Proxy			Change Default Fil	Audio Capture	Scripting	Security Software	Exploitation of	Windows Admin Share	PowerShell
Processes Spawning cmd.exe		Communicatic Through			File System Permissio	Video Capture	Indicator Removal fro	Permission Groups	Legitimate Credentials	Taint Shared Content	Process Hollowing
CAR-2013-02-003		Custom Comman			New Service		Exploitation of	System Informatio	Bypass User Account	Replication Through	Execution through API
Simultaneous Logins on a Host CAR-2013-02-008		Standard Non			Scheduled Task		Indicator Removal o	File and Directory	Web Shell	Pass the Ticket	Regsvr32
User Logged in to Multiple Hosts		Web Service			Service Registry		DLL Side- Loading	Account Discovery	AppInit DLLs	Remote File Copy	InstallUtil

Alarm Correlation And Attack Response

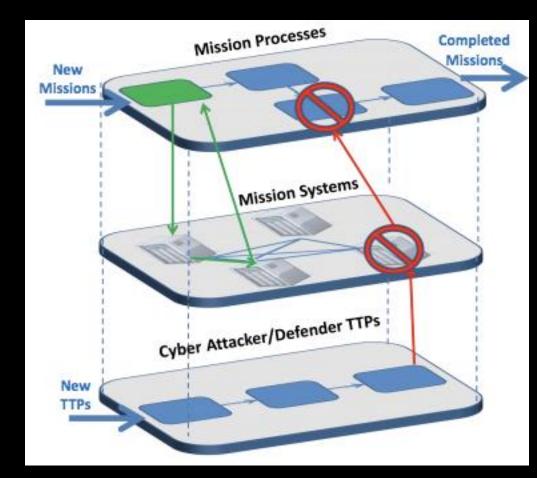
₩circs

<\$ \$ < ₩@CC

Addec Cost

Loss Expectanc Net Benefit

Mitigation Costs


Mitigation Options

Security Metrics

Analyzing Mission Impacts of Cyber Actions (AMICA)¹²

For mission analysts, we seek to answer mission impact questions

For cyber defenders and analysts, we consider security posture

¹ 2015 NATO IST 128 Workshop (https://pdfs.semanticscholar.org/ff89/1d6348e2e2f01b3eef52126b45c64110a0a1.pdf) ² http://csis.gmu.edu/noel/pubs/2015_AMICA.pdf

Contents

- Science of Cyber Security
- Developing Communities
- Cyber Risk Evaluation & Assessment
- Cyber Model Example
- Current Evaluations
- Developing Work
- Wrap Up

Wrap Up

Cyber Threads	Examples					
People	 Mission Operators Cyber Security Professionals M&S Professionals that help design secure cyber systems 					
Process	 Insurance Evaluation Assessment Frameworks Knowledge Based Design Range Testing Modeling Process for Developing Secure Cyber Systems 					
Technology	 Attack / Dependency Graphs Layered Network Simulators Threat Frameworks 					