

Long-Term Strategy for DoD Trusted and Assured Microelectronics Needs

Jeremy Muldavin, Ph.D. Office of the Deputy Assistant Secretary of Defense for Systems Engineering

20th Annual NDIA Systems Engineering Conference Springfield, VA | October 26, 2017

20th NDIA SE Conference Oct 26, 2017 | Page-1

Microelectronics Trends

20th NDIA SE Conference Oct. 26, 2017 Page-2

Future Warfighting Systems Advanced Microelectronics Needs

20th NDIA SE Conference Oct. 26, 2017 Page-3

A DoD System on Chip Example

Leverages extreme ASIC computational technologies

- Coherent beam forming, adaptive nulling and interference cancellation:
 - 5-10x range extension or 1000x lower power
 - 10000 interferer to signal ratios
- Mobile radio form factor achieved by ASIC accelerators with 1.7 TOPS/W

20th NDIA SE Conference Oct. 26, 2017 Page-4

Electronics as a Strategic Issue

[†] Including the broader national security community, banking, critical infrastructure, commercial industry, etc.

20th NDIA SE Conference Oct. 26, 2017 Page-5

What We Are Doing

COTS and FPGA

- Supply chain risk
 management
- FPGA Assurance Study
- Radiationhardened microelectronics initiative

Systems Engineering Approach

20th NDIA SE Conference Oct. 26, 2017 Page-7

Trusted & Assured Microelectronics FY18 Activities and Investments

	Inputs	Inputs Investments & Actions		FY18 Funding Distribution		
Overall	 DARPA, IARPA, & Commercial Assurance Technologies JFAC Labs, DMEA, FFRDCs DoD Programs & Commercial Suppliers 	 <u>Develop, Mature and demonstrate</u> Assurance Mitigations Evaluate Effectiveness of protections of IP and Integrity Support trusted mask fabrication Transition to & support programs 	 List of Validated mitigations and V&V capabilities PPP and mitigation guides and best practices Program demonstration support and trusted mask creation 	6.3% Availability	18.0%	75.7% Assurance

20th NDIA SE Conference Oct. 26, 2017 Page-8

Examples of Recent Cyber Attacks on HW Vulnerabilities

Rowhammer Attack

- Fault in DDR3 DRAM modules
- High integration density allows leakage current to neighbor rows on readout
- Rowhammer induces frequent readout to intentionally force bit flips in adjacent transistor rows.
- Effects: Loss of Data, Loss of Reliability, Privilege Escalation

- **Cyber attack on Smart Phones with Adups** Firmware (FW)
 - FW uses HW to perform data exfiltration of texts and personal data, enabling Chinese gov't to monitor citizens
 - Very weak security protections enabled exploitable FW to be loaded on American Smart Phones.

of Adjacent Rows

 Effects: Millions of smartphones affected worldwide and devices geographically targeted thru GPS data

Reference: <*https://en.wikipedia.org/wiki/Row_hammer>*

Reference: <*https://www.nytimes.com/2016/11/16/us/politics/china-phones-software-security.html?_r=2>*

Mitigations to Cyber Exploits of HW Vulnerabilities

Virtual Machine Host Server

Kernel

Virtual IO Path

IO & Platform Devices

(Disk, LAN, USB, BMC,

PMI, ACPI, etc.)

VM Mgmt

Physical

Driver

Direct IO Path

Virtual Machine

Unmodified OS

[MS Windows]

IO System

Direct IO Path

m VM

AMD-V

Intel VT

 \odot

Gues

Root of trust (ROT)

- Encryption of data
- Monitoring for unauthorized operations
- Detection of attempts to root a device
- Memory security partition management
- Digital rights management

Embedded Hypervisor Enforces Security Rules from ROT

- Requires only signed SW and FW can be loaded onto HW
- Controls authentication and setup of initial system state to restrict unauthorized access to HW

Monitoring Software

- Software that observes execution of the system
- Alerts to any unauthorized behavior

Reference: <*http://www.novell.com/documentation/vm server/virtualization_basics/data/ba0khrq.html*>

XEN Hypervisor Implementation

Virtual Machine

Paravirtualized OS

[NetWare]

IO System

 \odot

VetWare

Kerne

Virtual IO Path

Virtual Machine

Paravirtualized OS

[Linux]

IO System

Hardware

0

(7)

Virtual IO Path

XEN Hypervisor (Virtual Machine Monitor)

Physical Machine

Memory & CPU

(x86, x86-64, EM64T)

New Trust and Assurance Approaches

Implement and demonstrate assurance capability with transition partners

20th NDIA SE Conference Oct. 26, 2017 Page-11

Potential Paths to ASIC Production for DoD

20th NDIA SE Conference Oct. 26. 2017 Page-12

T&AM Focus Areas

Verification & Validation

 Improves microelectronics test and verification methodologies in support of verifying the trust and assurance of parts

Design Assurance

 Assured and immediate access to domestic production of advanced microelectronics and disruptive research and development investments to surpass the impending limitations of Moore's Law on silicon microelectronics

FPGA Assurance

• Demonstrate innovative design, manufacturing, imaging, tagging, control and assessment approaches for protecting DoD's microelectronics supply chain and intellectual property

Enhanced Manufacturing

 Development of advanced node microelectronics fabrication and packaging capabilities at existing SOTP foundries with a focus on high-mix, lowvolume alternatives

Radiation Hardened Microelectronics

 Demonstrate innovative design, manufacturing, and assessment approaches for trusted, strategic radiationhardened electronics in advanced technology nodes for next-generation strategic systems

Outreach & Standards

- Develop standards and practices to foster commercial development of secure, trusted and assured parts.
- Document and promulgate security-enhancing design practices across government, industry, and academia

Microelectronics Trust Verification Technologies

Verification needed when Trusted Foundry not available

- DoD formed JFAC to provide this service
- Long-term challenge to analyze leading-edge ICs and scale up capacity

Design Verification

• Verification/assurance of designs, IP, netlists, bit-streams, firmware, etc.

Physical Verification

 Destructive analysis of ICs and Printed Circuit Boards

Functional Verification

 Non-destructive screening and verification of select ICs

DoD, Intelligence Community, and DoE enhancing capability to meet future demand

20th NDIA SE Conference Oct. 26, 2017 Page-14

Verification & Validation: Survey Status and Initial Results

Data obtained from:

- Programs (early production and pre-production) based on BOMs
- Commercial Assemblies bases on BOMs
- Programs that have completed prioritized usage survey
- Companies that have completed prioritized usage survey
- S&T Programs that have completed prioritized usage survey

NVIDIA Tesla GPUs 15.3 Billion transistors IC

Google's Tensor Processing Unit could advance Moore's Law 7 years into the future

Above chart curtesy IDA report, Examination of DoD's Us Microelectronics in Weapon Systems, 2013

Outreach and Industry Standards

- JFAC Standards and Best Practices Sub Group
 - Establish a charter to be reviewed and approved by JFAC, T&AM and Service/Agency communities
- Evaluate COTS methods and realistic/practical alternatives for attaining trustworthiness
 - Extension and application of the Trustworthy Supplier Framework

Develop and expand the NDIA Collaboration

- Work towards the establishment of the "Electronics Division"
 - Shared government liaison DASD(SE), DMEA, DASD(MIBP) and NRL on behalf of the MEC MWG
- Continue building community, workshops and meetings build the NDIA Electronics as a central focus for industrial dialog with the government

Collaboration and Information Sharing

- Pilot with FPGA Assurance and the JFAC Standards Group Collaboration models, Information sharing
- IntelDocs on Intelink for FOUO/Unclass (NIPR)
- Pilot Standards Information Sharing on IntelDocs
- IDA Sharepoint for Unclass/US citizen (TM JWG and Trust Models)

• Outreach – Education, Training and Awareness

- Develop a long-term plan and near term FY18 goals
- Build outreach materials for awareness of the FJAC and HwA
- Coordinate T&AM efforts for outreach
- Coordination
 - Coordinate government wide HwA and T&AM activities
 - A single POC for common announcements, questions and interfaces with government, industry and academia
 - Active coordination and collaboration of T&AM related Conferences and Meetings
 - GOMACTech, HOST, MIM, FICS, etc.

FPGA/SOC Lifecycle Map

20th NDIA SE Conference Oct. 26, 2017 Page-17

Pursuing Multiple Focus Areas Across the FPGA Lifecycle

	FPGA/SoC Hardware Development	FPGA/ Firmware Development	FPGA/SoC Provisioning	Operation & Maintenance
Policy	Adopt policy to promo	te best practices acros	ss acquisition program	s
Independent Verification And Validation	Expand IV&V capabili To be offered to the	ty and capacity for Ph	ysical, Functional and	Design Verification
New Technology	Development of new t deliver advanced supp	echniques to verify an oly chain tracking tech	d validate protect IP C nology and	confidentiality,
Supply Chain Threat	Enhanced interaction threat information to b	with the Intelligence C etter enable risk analy	community to provide r /sis and Risk Analysis	nore specific
Industry Engagement	Manufacturers' relatio IV&V requires time Design tool distribu Design verification 	ns are critical: y and detailed design tion and usage features in the design	related information, or enabled by the des	ign tools
Leverage Related Efforts	Coordinate with Major Title III Trusted FPC Trust in FPGA Stud Aerospace TOR Gu	Efforts across DOD a GA ly uidance	and IC Communities:	

Electronics as a Strategic Issue

[†] Including the broader national security community, banking, critical infrastructure, commercial industry, etc.

20th NDIA SE Conference Oct. 26, 2017 Page-19

- 1. Define the various levels of trust required by DoD systems
- 2. Identify means of classifying DoD systems based on the required level of trust for microelectronics within the system
- 3. Identify means by which trust in microelectronics can be assured
- 4. Identify a means to increase the supplier base for assured microelectronics to ensure multiple supply pathways
- 5. Provide an assessment of the microelectronics needs of the DoD in future years, including the need for trusted, radiation-hardened microelectronics
- 6. Provide an assessment of the microelectronics needs of the DoD that may not be fulfilled by entities outside the DoD
- 7. Identify the resources required to assure access to trusted microelectronics, including infrastructure workforce, and investments in science and technology
- 8. Develop a research and development strategy to ensure that the DoD can, to the maximum extent practicable, use state of the art commercial microelectronics capabilities or their equivalent, while satisfying the needs for trust
- 9. Develop recommendations for changes in authorities, regulations, and practices, including acquisition policies, financial management, public-private partnership policies, or in any other relevant areas, that would support the achievement of goals of the strategy

Source: National Defense Authorization Act for Fiscal Year 2017, Section 231

Leverage and Dominate Microelectronics for US Interests

20th NDIA SE Conference Oct. 26, 2017 Page-21

Create Microelectronics Innovation Throughout the United States

20th NDIA SE Conference Oct. 26, 2017 Page-22

Rebuilding US Microelectronics Leadership and Dominance

20th NDIA SE Conference Oct. 26, 2017 Page-23

Microelectronics Strategy Challenges & Investments

20th NDIA SE Conference Oct. 26, 2017 Page-24

Demonstrating Innovation for National Security and Interests

20th NDIA SE Conference Oct. 26, 2017 Page-25

Disrupting Innovation for National Security and Interests

20th NDIA SE Conference Oct. 26, 2017 Page-26

Microelectronics Innovation for National Security

Problem		Actions & Investments	Outcomes			
Access & Assure Ecosystem	 Few domestic SotA foundries & packaging, dominated by commercial forces, \$\$ to access, growth in Asia Development complexity, costs, and lack of expertise and security are stifling innovation in SoC ASIC hardware DoD influence is limited & national security needs not being met 	 Provide Assured access to SotA, SoP, and Gov. foundries & packaging Provide Assured development community (IP, EDA, experts, secure computing, Gov. IP) for innovation Support Innovative co-development of 10-1000x capabilities for USG and strategic growth application areas 	 Strong domestic assured source for Gov. & private innovative microelectronics products Significantly reduced barriers to rapid capability development with assurance for Gov. and cooperative emerging industries Immediate demonstration of 10-1000x perf. for USG & industry in autonomous systems, IoT, financial, commercial space, etc. 			
Enabling Domestic Manufacturing	 Many domestic SoP foundries are at 200mm and >65nm nodes and aren't being updated Advanced-node flexible, scalable manufacturing is not available in U.S. Innovative R&D going to foreign sources to scale and integrate new device and circuits architectures 	 Enhance SoP foundries to 65nm & copper back end & E-Beam litho now Co-develop advanced fabrication (5-65nm) tools for existing 200mm Develop mini-fab to transform and distribute SotA disruptive technology development for high-mix low-volume production 	 Immediate performance improvement and close parity to SotA processes for USG purposes Create manifold sources for SotA in the installed US SoP foundries to remain competitive Rapid low-cost development of materials, device, and process for low cost high-mix and low-volume production to capture innovation & manufacturing throughout the U.S. 			
Dominate & Disrupt R&D	 USG investment in disruptive R&D for next- generation microelectronics has significantly diminished Research is stagnant when an inflection point in the electronics industry marked by changes in Moore's Law is about to occur The country that exploits this inflection point will maintain or obtain economic and security superiority 	 Leverage DARPA JUMP program and industry collaboration to develop disruptive materials & electronics Lead the development of new circuit architectures for next-generation computing and strategic applications Develop tools and technologies that allow rapid redesign of complex systems 	 Develop the onshore manufacturing and design capacity to own the next generation of microelectronics technology Maintain U.S. leadership in the semiconductor industry with healthy U.S. R&D community Highly productive designers able to develop complex systems with assurance, at a rapid pace and low cost to keep ahead of our global competitors 			

Systems Engineering: Critical to Defense Acquisition

Defense Innovation Marketplace http://www.defenseinnovationmarketplace.mil

DASD, Systems Engineering http://www.acq.osd.mil/se

20th NDIA SE Conference Oct. 26, 2017 Page-28

Dr. Jeremy Muldavin ODASD, Systems Engineering 571-372-6690 jeremy.b.muldavin.civ@mail.mil

20th NDIA SE Conference Oct. 26, 2017 Page-29

20th NDIA SE Conference Oct. 26, 2017 Page-30

Commercial Computing Trends

DoD Trusted Foundry Program Consolidation - Defense Microelectronics Activity (DMEA)

Transition

Newly Established Trusted Foundry Contract

Sustained Network of Trusted Certified Suppliers

Trusted and Assured Microelectronics Program:

Alternate Source for Trusted Photomasks

Preparation activities	Capability Development	Deploy new capability	
			/

Verification and Validation (V&V) Capabilities and Standards for Trust

Preparation	Improve capabilities and capacity, and provide support to program needs, for						
activities	analysis of microelectronics trust						

Identify and develop standards, practices, and partnerships to improve availability of trust from commercial providers

Advanced Technology and Alternative Techniques for Microelectronics Hardware Trust

	Preparation activities	Capat	Capability development and demonstration Deploy new capabilities						
2015	2016	2017	2018	2019	2020	2021	2020	2023	2024

Barriers to Innovation Using (28nm) System on Chip

http://semiengineering.com/how-much-will-that-chip-cost/

Mitigations to Cyber Exploits of HW Vulnerabilities

Address Space Layout Randomization (ASLR)

- Randomly assigns memory layout to increase complexity of attack on specific memory locations
- Using this method at runtime increases level of security

Obfuscation

- Multiple variants of HW to obfuscate circuit functionality against attacks
- Data-path generalization to remove specificity of use

Reference:<http://www.darpa.mil/attachments/NDIA2.3.pdf>

Reference:<http://www.cs.vu.nl/~herbertb/download/papers/anc_ndss17.pdf>

20th NDIA SE Conference Oct. 26, 2017 Page-34