

Analysis of Environmental Impacts on Military Systems

20th Annual NDIA Systems Engineering Conference October 26, 2017

Dr. Dharhas Pothina Associate Technical Director US Army Engineer Research and Development Center

Environmental Simulation

- Gaps:
 - DoD has an explosion of environmental data but access and retrieval is difficult
 - Demand within DoD for data has expanded but it is challenging to efficiently utilize
 - DoD lacks capability to produce high-fidelity, predictive, environmental physics for the entire globe to support operations and acquisitions
 - Data sources within the DoD have a scale and parameter mismatch (weather, terrain, etc.) for many classes of problems (operational, in-depth analyses, ...)

• ERS Approach:

- Develop a modular HPC enabled framework to discover, simulate, and retrieve environmental data
- Develop high-fidelity scene generation and environmental simulation tools
- Demonstrate modeling of environmental scenes worldwide

• Leverage:

- DoD, federal, international, geospatial data, and environmental-modeling frameworks
- Army ERS program
- Studies directed by Army MSCoE, NVESD, PEO IEW&S, and others

Motivating Example: Hurricane Flooding

ENGINEERED RESILIENT SYSTEMS

Motivating Example: Sensor Virtual Proving Ground Workflow

Analyze Environmental Impacts

- Access validated geotypical simulations and real imagery
- Bring in notional Sensor / Automatic Target Recognition (ATR) Models
- Mount on arbitrary platforms
- Test existing sensors for probability of detection (PD) and false alarm rates (FAR) in new or different environments

Integrated Product

Powerful but heavyweight and inflexible, making it **hard** to:

- Adapt to new tasks
- Make use of available computing hardware
- Automate repetitive steps like parameter sweeping
- Create novel visualizations
- Add support for data larger than previously expected

Can require excessive setup and programming and be complicated to deploy

Ad-Hoc Scientific Python

- Flexible by design
- Glue components together to make a workflow
- Components can be substituted/modified at will
- Flexible support for scaling up and out (Numba, Dask)
- Simple visualization via web browsers for local or remote sessions
- Solutions for big data viewed in browsers (Datashader)
- Emerging support for deploying notebooks as apps, dashboards

- Modular Python wrapped components
- Flexible workflows
- Front end agnostic
- Scale to multiple architectures
- Enhance existing open tools when possible
- Utilize existing enterprise capabilities when available
- Use standards when possible/feasible but value simplicity over compliance

Notional Architecture

ENGINEERED RESILIENT SYSTEMS

Search, download, and transform environmental data needed to set up high-fidelity, physics based models

- Extensible Plugin Architecture
- Python API
- Abstraction Layer
- Multiple Frontends
- Geospatial/Geotypical Search
- Data Catalog/Retrieval/Archival
- Data Transformation

ERS Quest

Environmental Simulator Team:

Kevin Winters Scott Christensen Aaron Valorosa Gaurav Savant

: ERDC Collaborators:

Integrated Simulation Environment Phenomenology (ISEP) Program

Industry Collaborators:

Anaconda Incorporated Kitware Incorporated Aquaveo

Questions

ERS NDIA SYS ENGINEERING CONF - OCTOBER 2017