

Engineered Resilient Systems

Influencing Acquisition Innovation
20th Annual NDIA Systems Engineering Conference
October 26, 2017

Owen Eslinger, PhD
ERS Program Manager
US Army Engineer Research and Development Center (ERDC)

ERS Platform: Innovation & Acquisition Reform

DoD current goals of acquisition reform and innovation are supported in <u>six major thrusts</u> within ERS

Non-linear Engineering

Promotes Model-based Engineering

Physics-based Modeling

Enables design accuracy earlier in the process.

Workflow Solutions

Breaks down barriers to HPC use

Data-driven Analytics and Machine Learning Data Analytics

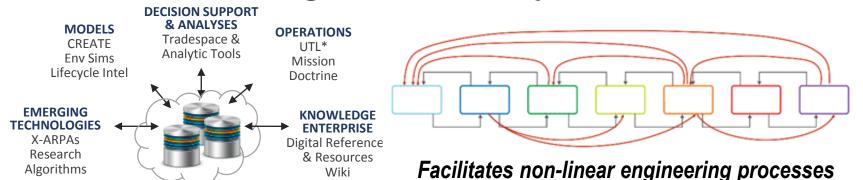
Deeper insights into decisions

Big Data Visualization

Enhances communication and understanding in decision-making

Govt-Industry Collaboration

Amplifies communication with common understanding and goals


Non-linear, Model-based Engineering

Linear Engineering does not support today's complex system engineering and analytics

Maximize the use of data and models for large scale analytics

^{*} Universal Task List

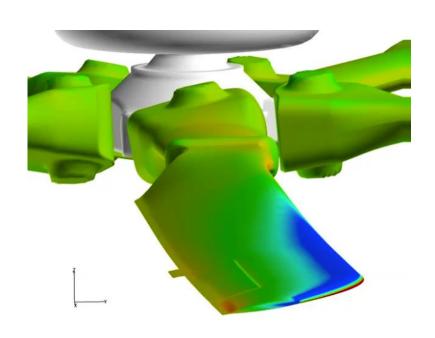
Relevant ERSNDIN Talks

11:05 - Introducing Lifecycle Cost to Early Conceptual Tradespace Exploration Alex Baylot - ERDC 1:00 - The Language of Complexity: Ontology in Systems Design & Engineering

Abe Wu - Raytheon Missile Systems

4:30 – ERS & MBE: Opportunities, Risks and Best Practices

Mark Halpern- Gartner



Physics-based Modeling

Provides confidence in performance and viability assessments <u>early</u> in the process

Realistic Insights:

- Effectiveness (performance) and efficiency (time & cost) are critical measurements in the concept design phase
- Test/Eval Confidence:
 - Makes supporting virtual flight certification processes for new or modified platforms achievable

Relevant ERSNDIN Talks

1:20 - Physics and model based aerodynamic design and analysis at GA Pritesh Mody - General Atomics 2:15 - Application of CREATE Tools for High Fidelity Design Space Exploration Antonio De La Garza III - Lockheed Martin 3:15 - Clustering Analysis in ERS Tools for Enhanced Trade Space Exploration of GVs Andrew Pokoyoway - TARDEC

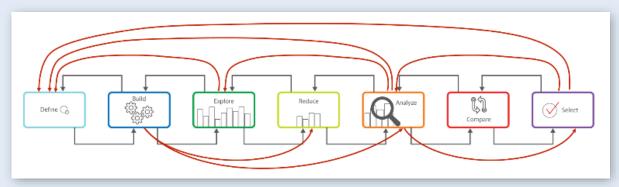
Workflow Solutions for Computational Environments

New workflow solutions lower the barriers to working in highperformance environments

Requirements & Systems Modeling

Tradespace Creation

Tradespace Analysis


INTEGRATION

AUTOMATION

COLLABORATION

INDUSTRY

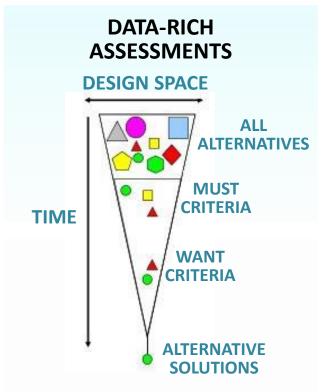
Develop & integrate tools to support complex system design processes

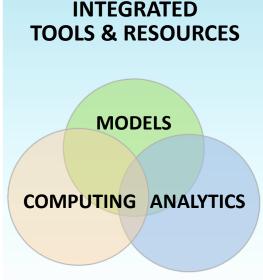
GOVERNMENT

Invest in future computing environments; communicate needs

Relevant ERSNDIN Talks

1:50 - Automation and Integration for Complex System Design Scott Radon - Phoenix Integration





Data-driven Analytics Machine Learning Data Analytics

Data-driven, tradespace analytics – provides greater insights earlier in the design process, e.g., cost vs risk

MACHINE LEARNING TECHNIQUES

Humans - 10s of Options

Excel - 100s of Options

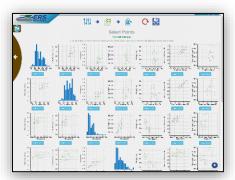
Data Analysis Tools - 1000s of Options

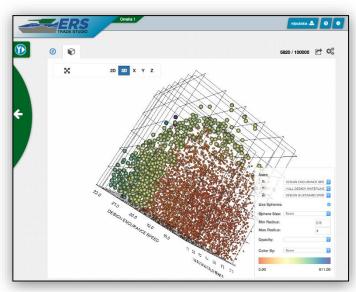
Hyper-dimensional space - Millions of Options

Relevant ERSNDIN Talks

8:50 - Scaling Data Analytics for Engineered Resilient Systems David Stuart - ERDC 10:15 - Tradespace: Informed Decision-making for Acquisition

Timothy Garton - ERDC


Big Data Visualization


Data Visualization builds accurate representations for the human mind

ERS Visualization of multi-dimensional data enables:

- Deeper comprehension (required for use of big data analytics)
- Higher level interpretation of multidimensional data representations for human consumption
- Critical communication in decision-making

8:50 - Scaling Data Analytics for Engineered Resilient Systems David Stuart - ERDC

ERS TradeAnalyzer* provides automatic insights into design decisions for the user.

*Beta Release completed Sep 2017

Relevant ERSNDIN Talks

10:15 - Tradespace: Informed Decisionmaking for Acquisition Timothy Garton - ERDC 3:15 - Clustering Analysis in ERS Tools for Enhanced Trade Space Exploration of GVs Andrew Pokoyoway - TARDEC

Govt-Industry Collaboration Infrastructure

Synthesizes community-wide goals with common data sources, analyses, assessments, and improved understanding.

ERS CLOUD COMPUTING
ARCHITECTURE
(ECCA)
IP PROTECTION

COMMON TOOLS
WORKFLOWS
SHARED TEST METRICS
ACCESS TO ANALYTICAL DATA
MODEL-SHARING
LEARNING...

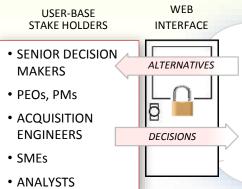
Relevant ERSNDIN Talks

11:30 - Overcoming the Government-Industry Collaboration Hurdle Patrick Martin, PhD - BAE 1:25 - Physics and model based aerodynamic design and analysis at GA Pritesh Mody - General Atomics 2:15 - Application of CREATE Tools for High Fidelity Design Space Exploration Antonio De La Garza III - Lockheed Martin

ERS in DoD Acquisition Context

INDUSTRY

PROTECTED

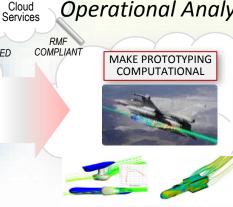

DESIGN ENGINEERING ANALYTICAL ENVIRONMENT

Conceptual Design Analysis of Alternatives Value Engineering HIGH-FIDELITY COMPUTATIONAL ENVIRONMENT

Prototyping
Test & Evaluation
Operational Analysis

PLATFORM DOMINANCE

Leverage domain expertise across DoD


CAPABILITIES GENERATION TRADESPACE ANALYSIS

MISSION ENGINEERING ANALYSES

COST WORKFLOW PRODUCTIVITY

Domain-specific Design and

Engineering Support

ENTERPRISE DATA AND KNOWLEDGE ENVIRONMENT

DIGITAL THREAD – DIGITAL TWIN

DOCUMENTATION

SEARCH

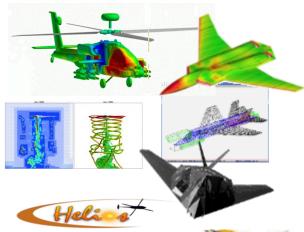
STORAGE

DISTRIBUTION

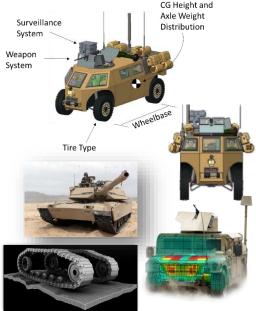
RETRIEVAL

TUTORIAL

ENGINEERING A RESILIENT SYSTEM



ERS: Developing Domain-specific Design Environments


Each domain has unique processes and toolsets

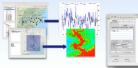
AirRotorcraft – Fixed Wing

Land

Sea

TOOLS AND PROCESSES

AFSIM



HPC

ENVIRONMENTAL SIMULATOR

SUPPORT BY COMMON, INTEGRATED RESOURCES

ERS Industry Participation

Industry partners are working with the Government in the ERS environment development and implementation

11:30 - Overcoming the Government-Industry Collaboration Hurdle Patrick Martin, PhD - BAE

1:00 - The Language of Complexity: Ontology in Systems Design

& Engineering

Abe Wu - Raytheon Missile Systems

1:25 - Physics and model based aerodynamic design and analysis at GA

Pritesh Mody - General Atomics

1:50 - Automation and Integration for Complex System Design Scott Radon - Phoenix Integration

2:15 - Application of CREATE Tools for High Fidelity Design Space Exploration

Antonio De La Garza III - Lockheed Martin

Senate Arms Services Committee Statement on Pentagon Acquisition System Report

"...Without ongoing reform and innovation, the Department of Defense cannot hope to maintain the technological advantages that underpin our nation's military superiority."

Senator John McCain Majority Chairman, SASC August 2017

