Physics and Model-Based Aerodynamic Design and Analysis

Presented: **NDIA Systems Engineering 2017** October 26, 2017

General Atomics Aeronautical Systems

Predator A Piston (In Production)

Predator B/C Turboprop/fan (Production/Dev)

> Small/Large UAVs (In Dev)

Product Aerodynamic Lifecycle

- Ideally need a set of "multi" tools
 - Multi-fidelity (low \rightarrow high fidelity)
 - Multi-physics (aero \rightarrow aero+)
 - Multi-cost (sec/min \rightarrow days/weeks)
 - Multi-user/org (aero vs. struct SME)
 - Multi-product (Aircraft A vs. Aircraft B)

Aerodynamic Pre-Flight Tool belt

Physics	Vortex Lattice / Panel	CFD	Wind Tunnel
Inputs	Conceptualize \rightarrow Run	$CAD \rightarrow Mesh \rightarrow Run \rightarrow Post$	$\begin{array}{l} Plan \to CAD/Build \to Test \to \\ Post \end{array}$
Outputs	Steady/Unsteady	Steady/Unsteady	Typically steady aero
	Linear aero	Non-linear aero	Non-linear aero
	Quick prelim results	Validation required	Established data source
Scale	Full-scale	Full-Scale	Sub-scale or partial model
(Reynolds #)	(Inviscid i.e. Re→∞)	(Flight Re)	(Variable Re adds cost)
Compressibility	Incompressible or	Compressible	Compressible. Separate tests
	compressibility corrected	(Flight Mach)	depending on Ma
Viscous	Inviscid	Typically fully turbulent	Typically tripped
Effects	or viscous corrected	Recent RANS transition models	or natural transition at test Re
Geometry	Panel representation and simple shapes	Geometric complexity increases meshing cost; smooth	Smooth; gaps/slots sizes may need to be Re scaled
Propulsion	Faired; no or limited prop	Faired or flow-through;	Faired or flow-through;
	effects	can model propulsion effects	separate tests for prop effects
Environment	Modeled in farfield	Modeled in farfield	Corrected for tunnel effects

Requirements / Conceptual Design

Semi-empirical methods drive requirements and sizing

- High level
- Grounded in actuals
- Good for derivative designs
- Good for high level trades

Opportunities

- Multi-fidelity framework at GA-ASI
- Others successfully options exist e.g. MIT TASOPT

Preliminary / Detailed Design

CFD and wind tunnel test drive design

- Analysis for design trades
- Test for database generation
- Test for perf verification

Challenges

- Managing multiple models...
 CREATE-AV enabling multidisciplinary analysis
- Physics!.. the RANS plateau LES/DDES still costly

Prelim / Detailed Design (Cont.)

Challenges (Cont.)

- Scalability... Wind tunnel cheaper than CFD for large databases.
- Trust... CFD meshing treated as an "art." Mesh convergence ≠ Solution accuracy. Test validation remains essential.
- Expectations... CFD not fast enough to be in-exact.
- Process... CFD treated as virtual wind-tunnel.

AIAA Drag Prediction Workshop (DPW5)

Graphic from: https://aiaa-

dpw.larc.nasa.gov/Workshop5/presentations/DPW5_Presentation_Files/14_D PW5%20Summary-Draft_V7.pdf

Test

- Pre-test predictions inform test focus areas
- Test helps CFD
 - Separated flows
 - Interaction effects
 - Transition
- CFD helps test
 - Wind tunnel corrections
 - Propulsion effects
 - Aero-static effects

Flow separation not seen in WT Tunnel Flow Viz Comparison

Closing the Loop on Performance

Sustainment / Growth

- New tools provide opportunities to improve existing systems and match evolving customer needs
- $GE \rightarrow GE-ER$ Case Study
 - GE double slotted flap designed with 2D CFD
 - GE-ER reconfigured existing hardware to a single slotted flap with 3D CFD
 - Wind tunnel and flight test in both cases
 - Meet current customer needs

Physics-based model used to test flap concepts (3D + transition modeling)

> Rejected concept with separated flaps

Final design; separation only behind flap fairings

Future Needs

Medium fidelity needs

- Fast 3D methods (can include fuselages)
- Non-linear unsteady options (damping deriv, loads spectra)

Promising Candidates

- Coarsely auto-meshed RANS/URANS with wall functions
- Auto-meshed Euler+IBLT3
- Probabilistic multi-fidelity methods like Kriging

• High fidelity needs

- More efficient algorithms (e.g. multi-grid)
- Less reliance on hardware solutions (costly)
- Faster CAD clean-up (time consuming)

Transition modeling essential for GA-ASI

- RANS based models promising from computational cost perspective
- Need models robust to Re 5e5-10e6 (current γ -Re θ not there)
- Natural transition covering TS, CF, laminar bubbles, attachment line contamination
- Forced transition covering trip, surface roughness/defects
- Non-dissipative methods for high level for freestream turbulence in RANS

