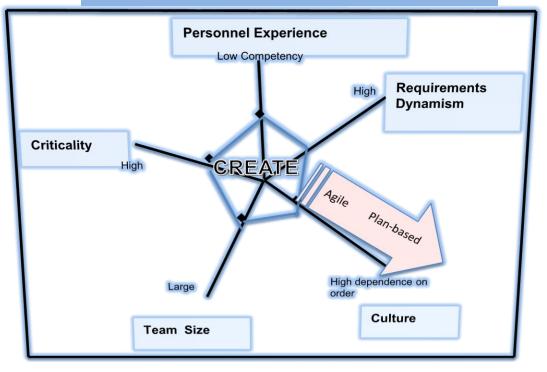
NDIA #19694: Software **Development Practices in HPCMP-CREATE™** (A Family of Large-scale, Physics-based, System-of-Systems, Software **Development Projects)**

An Application of Risk-based Software Development Practices

Richard P Kendall, Ph.D. with D.E Post, L.G. Votta, P.A. Gibson, L.A. Park, and S.M. Sundt October 2017

Risk-based Software Development Practices in CREATE



CREATE Core Software Development Risks

 Misaligned requirements management
Workflow management for distributed teams across the Services
Team communications across different security enclaves
Testing
Product support with limited resources

Software Development Practice Drivers

Development Environment Indicators

Notional Home Ground Chart for CREATE

after Boehm, Using Risk to Balance Agile and Plan Driven Methods, IEEE Computer Society, 2003

The attributes of CREATE teams favor an Agile Development approach

Distribution A: Approved for Public release; distribution is unlimited.

Risk 1: Misaligned Requirements Management

Mitigating Practice. Express requirements as use-cases in language that customers and developers share.

CREATE-Capstone Foundational¹ Required Capabilities

ID	Description		MG-06-UC-01	Unstructured all-tetrahedral volume meshing
MG-00	Import Externally Generated Geometry	(C		•
MG-01	Create Parameterized Geometry		MG-06-UC-02	Unstructured hexahedral-dominated hybrid meshing
MG-02	Support Dependency-Based Associativ	÷ 1		
MG-03	Repair Externally Generated (eg CAD)		MG-06-UC-03	Boundary Layer meshing with triangular wedge elements in the
MG-04	Support De-featuring and Idealization a			viscous region transitioning to tet. No interference from other BL
MG-05	Provide Robust Surface Meshing Algorit	n		
MG-06	Provide Robust Volume Meshing Algo	n	MG-06-UC-04	MG07-UC04 with complex geometries and multiple intersecting
MG-07	Provide Geometry-based Mesh Genera	lic		boundary-layers
MG-08	Support Multi-scale Models		MG-06-UC-05	Boundary layer meshing with hex, prism in the viscous regin
MG-09	Support Legacy Component Integratio			transitioning to hex/tet
MG-10	Support Analysis Model Attribution	I	MG-06-UC-06	MG06-UC05 with complex geometries & multiple intersections
MG-11	Provide Accurate and Scalable Runtime) (
MG-12	Core Framework (Internal requirements		MG-06-UC-07	Volume mesh handing for high order element (first approach)
	above)		140 00 110 00	
			MG-06-UC-08	Matching volume meshes for periodic boundary condition

Use-Cases promote a shared view of requirements with sources

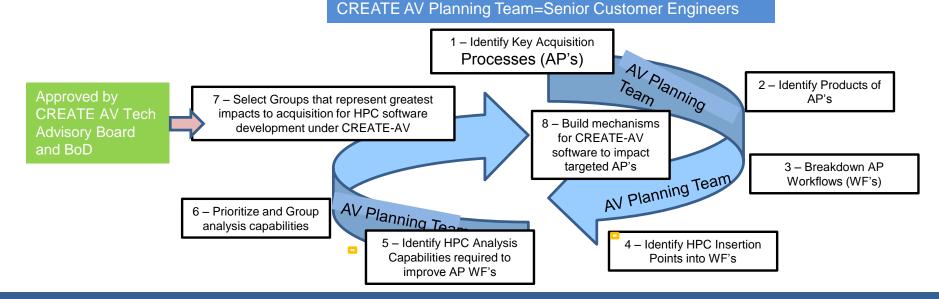
¹ Established in 2008

MG-06-UC-11 Modeling and meshing for sliding planes for moving parts MG-06-UC-12 Support for 'strand-meshing' paradigm

MG-06 Use-Cases

Risk 1. Misaligned Requirements Management

Mitigating Practice: Pursue Pilot Projects


Annually execute between 4 and 6 Pilot Projects to "shadow" acquisition programs engineering workflows-60+ Pilots since 2008!

Defense Engineering Workforce **CREATE-AV Developers** Pilots build bridges of trust and go deeper than product demos

Risk 1. Misaligned Requirements Management

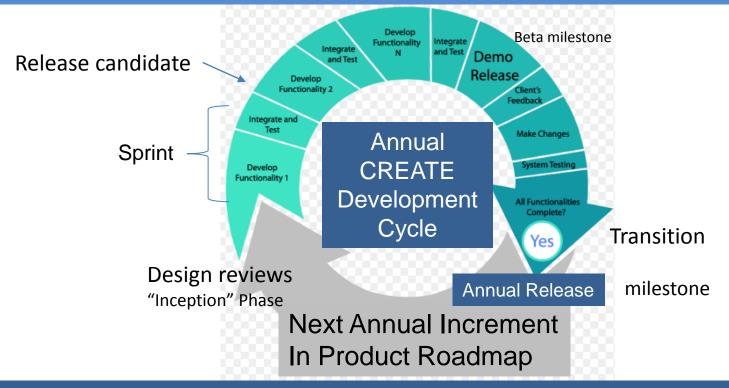
 Mitigating Practice: Bring Senior Customer Engineers into the planning cycle for new processes/workflows

Example: CREATE-AV Planning Process for new Stakeholder Processes/workflows

This demonstrates that the product solves the customer's problem and that it can be used in the customer's workflow

Risk 2. Software Development Workflow for Distributed Teams

• Mitigating Practice: Balance flexible planning with milestone-based accountability.


CREATE Disciplined Agile (DAD) Hacker Scrum Or Hero? CMMI Level II Practices Adaptive Methods Milestone/Risk Milestone/Plan Micromanaged Milestone Iterative, time-boxed, risk-driven Example: Spiral Agile Methods CMMI Software Methods CMMI Software Methods

after Boehm, "Getting Ready for Agile Methods with Care," IEEE Software, 2002

CREATE: An disciplined agile approach with the features of Milestone/Risk and Agile Workflow Management

Risk 2. Software Development Workflow for Distributed Teams

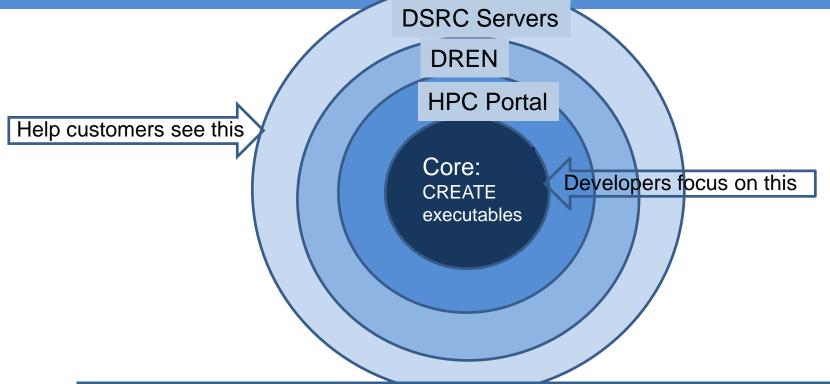
The CREATE Approach—Disciplines Agile Development based on Scrum with Risk-based Milestones

Our approach couples flexibility with accountability

Figure after info@matrix-soft.org

Risk 2. Workflow Management for Distributed Teams

• Mitigating Practice: Require at least one new "version" every year


Fiscal Year FY2011				L		FY2012				FY2013				FY2014				FY2015					016		I	FY20	17		F	FY20)18		FY2019 Planned				FY2020 Planned				FY2021 Planned				FY 2022 Planned			
Quarter	r 1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3 4	1		2 3	3 4	4 1	1	2	3 4	4 1	1 2	! a	3 4	
AV-Gene Design					1							2								3					4			5				6			7				8				9	L			10	I
AV-Hel	ios				2	2			3			4					5				6				7				8			9				10				11				12				_
AV-Kes	strel			2					3			4				5			6					7				8			9	•			10				11				12				13	
MG Capst		1				2			З	3			4				5				6				7				8			9				10				11				12				
RF-SE	NTRi				2				1	3			4				5				6						1	7			8				9				10				11			1	2	
Ships		2				3				4			5				6				7				8			9	•					10				11				12			13	3		
Navy	nips- yFOAI	м	1			2				3				4	L		5				6				7				8	3			9			1	10		\perp	1	1		\perp	12	L			
	hips- IESM		1			1.1					2				2.3	1			3				4			5				6				7			1	8		_	9	L		\square	10		b.	
Shi	ps-RS	DE		\downarrow		0.	5			1			1.	.1			1.2					2		\downarrow				3.	1		4				5			6	L	\perp	\downarrow	7	\square	\square	\square	8		
N	GV- Aercu	ry																									1				2				3			4	L			5				6		

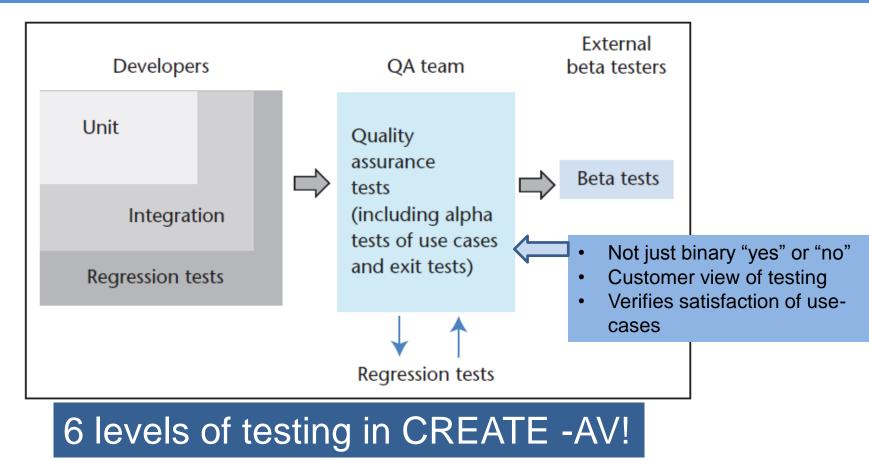
Annual releases guarantee meaningful progress during the fiscal year

Risk 3. Communications across different Security Enclaves

Mitigating Practice: Start with an extended view of the CREATE Product

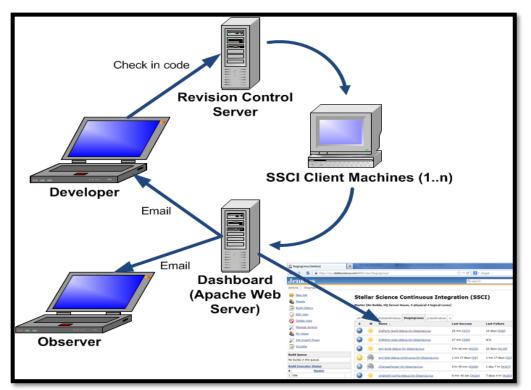
Ensure that Customers see the "whole" product

Risk 3. Communications across different Security Enclaves

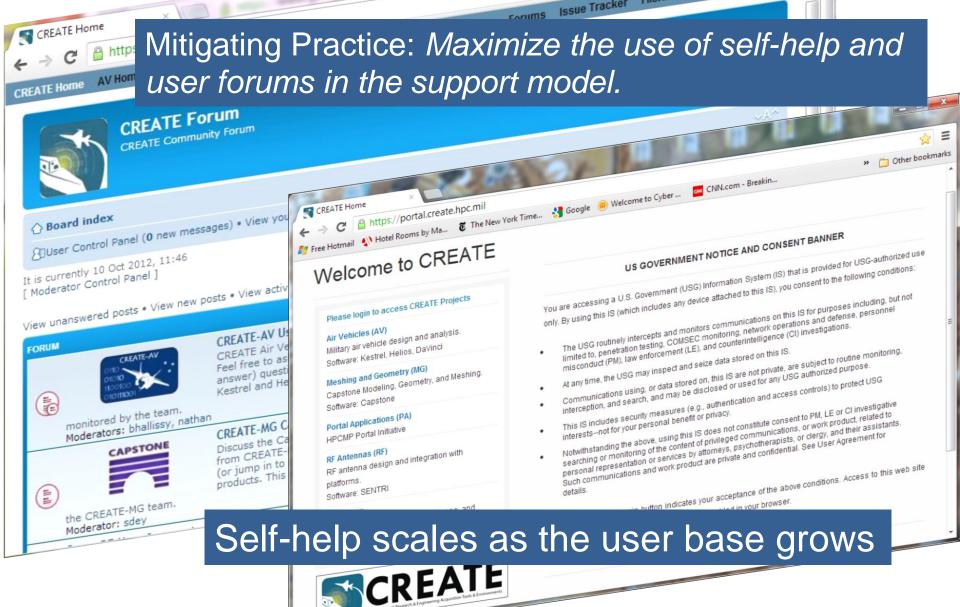


Secure access without the installation of any software

Risk 4: Software testing


Mitigating Practice: Implement a testing program compliant with National Research Council guidelines

Risk 4: Software Testing



Mitigating Practice: Strive for continuous integration with automated regression tests for each commit

CREATE-RF Continuous Integration Platform Discover problems before they are hard to fix

Risk 5. Inadequate Product Support

Dist

oregination of the second state of the seco

53 1

How Well Has this Worked?

NDIA #19694

Richard P. Kendall, Ph.D.

Software Engineering Consultant DoD High Performance Computing Modernization Program (505) 660-0976 <u>Richard.p.kendall4.ctr@mail.mil</u>