

HPCMP CREATE[™]-Genesis CFD

Jim Forsythe, Ph.D., Quality Assurance July 20, 2017 Distribution Statement A. Approved for public release: distribution unlimited

Overview

2 Sample Curriculum

3 Examples

- Supersonic Airfoil
- Transonic Wing

Genesis-CFD Components/Capabilities

- Single Mesh Unstructured Solver
 - Euler/Laminar/RANS/DES
 - Ideal Gas
 - Limited cores per job (128-256)
- Motion
 - Prescribed (including arbitrary)
 - 6-DOF without constraints
- Structures
 - Modal solver
- Plugins useable, but without SDK to develop

- Propulsion
 - 0-D Linear engine model for BC's
 - Rotating reference frame
 - Sliding interfaces
- Visualization features
 - Full Volume write to Tecplot, FieldView, Ensight
 - Extracts for FieldViewXDB, Silo, Tecplot, VTK
 - In-Situ using Vislt

Sample Curriculum

- Core courses
 - Fluids I (Incompressible)
 - Fluids II (Compressible)
 - Experimental Methods / Labs
- Electives
 - Applied CFD
 - Propulsion

- Lectures Use canned CFD solutions for illustration (cylinder, sphere, airfoil), examples
 - Langrangian derivative terms on a cylinder, e.g. $v \frac{\partial u}{\partial v}$
 - Fluid "particle" deformation types (e.g. angular/linear deformation, rotation, strain, volume dilitation).
 - Gradients (e.g. pressure)
 - Steady vs. Unsteady
 - Streamlines, Streaklines, Pathlines

Sample Curriculum - Fluids

- Lectures Use canned CFD solutions for illustration (cylinder, sphere, airfoil), examples
 - Langrangian derivative terms on a cylinder, e.g. $v \frac{\partial u}{\partial v}$
 - Fluid "particle" deformation types (e.g. angular/linear deformation, rotation, strain, volume dilitation).
 - Gradients (e.g. pressure)
 - Steady vs. Unsteady
 - Streamlines, Streaklines, Pathlines

Sample Curriculum - Fluids

- Lectures Use canned CFD solutions for illustration (cylinder, sphere, airfoil), examples
 - Langrangian derivative terms on a cylinder, e.g. $v \frac{\partial u}{\partial v}$
 - Fluid "particle" deformation types (e.g. angular/linear deformation, rotation, strain, volume dilitation).
 - Gradients (e.g. pressure)
 - Steady vs. Unsteady
 - Streamlines, Streaklines, Pathlines
- Basics of CFD (1-2 lectures)
 - Show simple model problem (1-D linear convection, burgers eqn)
 - Finite difference derivation from Taylor series. Order of accuracy
 - Explicit vs. implicit
 - When to use CFD vs. potential based methods
- CFD project (sphere at various Re)
 - Simple geometry or provide meshes
 - Grid and/or timestep refinement
 - Comparison to experimental data

Sample Curriculum - Other

- Experiment/Lab course
 - Subset of students provide CFD support
 - Possible uses of CFD:
 - Analyze wind tunnel wall effects
 - Visualize the flow being measured
 - Test validity of CFD
- Propulsion
 - Single Stage Analysis using rotating reference frame and sliding interfaces
 - Inlet losses using Engine boundary condition
- Design
 - CFD of final designs using DaVinci
 - Verify performance
 - More advanced look at dynamic stability derivatives

Examples - Diamond Airfoil

- Description:
 - Fluids II
 - Student project or as a lecture aid
 - Slow oscillating pitch motion to show effect of α
- Time:
 - Meshing: 15 minutes
 - Job Setup: 10 minutes
 - Post-processing: 30 minutes

Mach over Diamond Airfoil at Mach=2.0, α = $\pm 10 \deg$

Examples - Diamond Airfoil

- Description:
 - Fluids II
 - Student project or as a lecture aid
 - Slow oscillating pitch motion to show effect of α
- Time:
 - Meshing: 15 minutes
 - Job Setup: 10 minutes
 - Post-processing: 30 minutes

Pressure over Diamond Airfoil at Mach=2.0, α = ±10 deg

Examples - Onera M6

- Description:
 - Fluids II
 - Student project or as a lecture aid
 - Shows transonic effects
- Time:
 - Meshing: Provided
 - Job Setup: 10 minutes
 - Post-processing: 30-60 minutes

Mach cutting plane with surface pressure on OneraM6 wing