LIFE CYCLE ASSESSMENT: A TOOL FOR PROTECTING DEFENSE ASSETS

Kelly Scanlon, DrPH, CIH

Chemical & Material Risk Management Program

Office of the Assistant Secretary of Defense

(Energy, Installations, and Environment)

20th Annual Systems Engineering Conference October 26, 2017

AGENDA

- **▶** Policy
 - Sustainability Analysis Guidance
- **▶** People
 - DoD Community of Interest
 - Federal LCA Commons
- **▶** Practice
 - Pilot Projects

SUSTAINABILITY ANALYSIS GUIDANCE

INTEGRATING SUSTAINABILITY INTO ACQUISITION USING LIFE CYCLE ASSESSMENT

Sustainability Analysis = LCA + LCC

- Consistent, practical, flexible methodology
- Identifies most sustainable alternative among those that meet performance requirements
- Uncovers previously hidden human health and environmental impacts and their associated life cycle costs
- http://www.denix.osd.mil/esohacq/ home/

Department of Defense Guidance

Sustainability Analysis Guidance:

Integrating Sustainability into Acquisition Using Life Cycle Assessment

Version 5.0 - Current Version

December 2016

SUSTAINABILITY ANALYSIS METHODOLOGY

Step 1

Define the scope

Step 2

Develop a life cycle inventory

Step 3

Estimate life cycle impacts Step 4

Estimate life cycle costs

Step 5

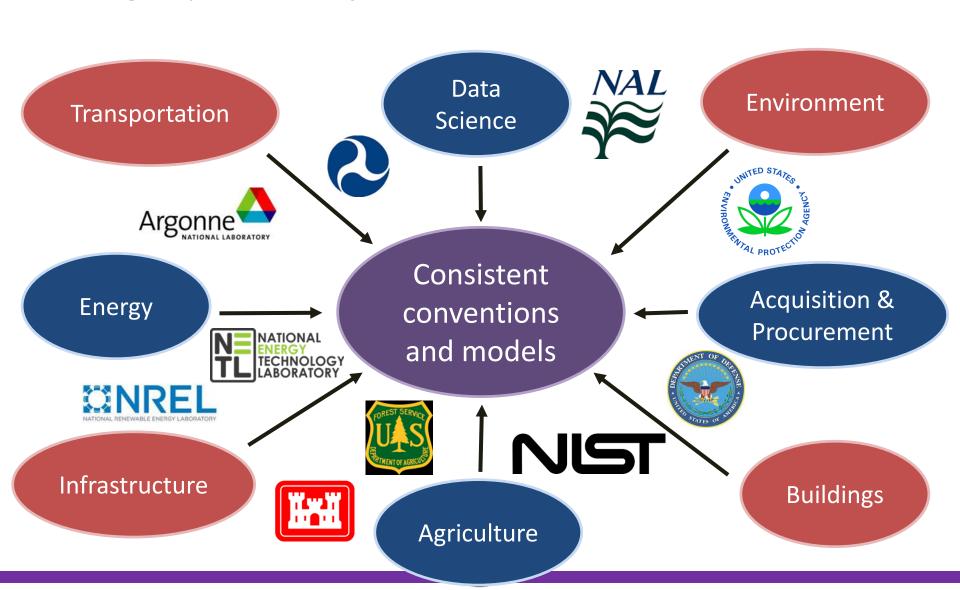
Synthesize results and iterate

SUSTAINABILITY ANALYSIS COMMUNITY OF INTEREST

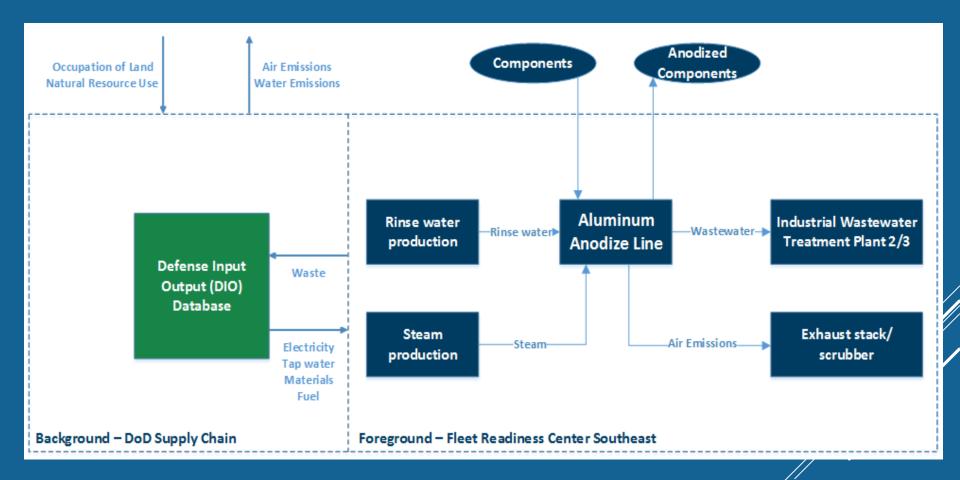
Current Examples

ESOH
SERDP-ESTCP
Systems Engineering
AFLCMC
FRCSE
GE
ERDC
Lockheed Martin

FEDERAL LCA COMMONS



How We Collaborate

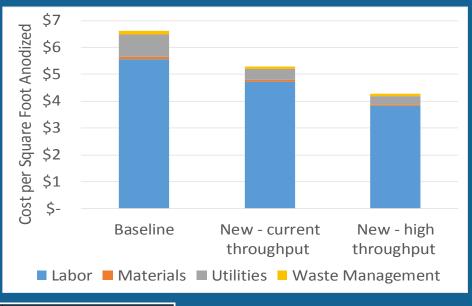

Interagency Community-of-Practice around LCA

PILOT PROJECT

NAVAL AIR SYSTEMS COMMAND FLEET READINESS CENTER SOUTHEAST (FRCSE)

SCOPE

LIFE CYCLE INVENTORY

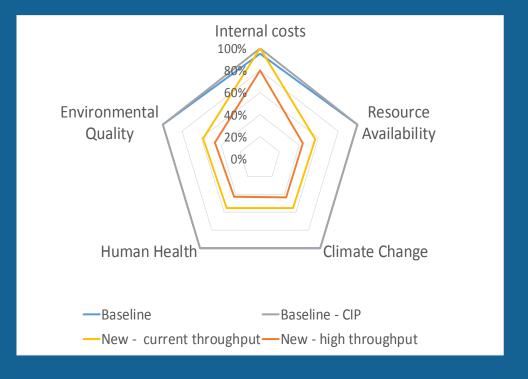

46	OLD/RAISED ANODIZE LINE (UNIT PROCESS)											
47	Material inputs (old/raised line) Tape, brite pads, and				of other supporting materials are outside the scope of this study							
48	Description	Usage	Units	Annual Usage		Cost	Units	Cos	st per Year		NAICS	Data Source(s)
49	Sodium dichromate	70	lbs/year	70.000	5	326.74	\$/100 lbs	\$	228.72) // I	325180 Other Basic Inorganic nemical Manufacturing	FRCSE consumable ecords
50	Aluminum ball cathodes	0.67	cathode/year	0.67		\$1,000.00	\$/cathode	\$	666.6	(32812 Metal Coating, Engraving xcept Jewelry and Silverware), nd Allied Services to	FRCSE Metalast FOI/CBA
51	Sulfuric acid	201.33	gal/year	201.33	\$	210.00	\$/6.5 gal	\$	6,504.62	2 V.	25180 Sulfuric acid nanufacturing	RCSE consumable records
52	Aluminum sulfate	80.58	lbs/year	80.58	F	22.75	\$/50 lbs	F	36.67		95180 aluminum sulfate	FRCSE consumable

Amount used in a year

Annual cost

Link to DIO (supply chain)

LIFE CYCLE COSTING



	Baseline		New – current throughput	New – high throughput				
Initial Costs (occur	itial Costs (occur in year 0)							
Equipment & Materials	\$-	\$1.51	\$23.38	\$17.99				
Labor	\$-	\$0.84	\$-	\$-				
Annual Costs (recu	nnual Costs (recurring)							
Labor	\$5.56	\$5.56	\$4.72	\$3.81				

	Baseline		New – current throughput	New – high throughput	
Materials	\$0.09	\$0.09	\$0.07	\$0.05	
Utilities	\$0.84	\$0.84	\$0.41	\$0.32	
Waste Management	\$0.13	\$0.13	\$0.09	\$0.09	
Net Present Value	\$91.01	\$95.65	\$96.19	\$76.80	

11

INTEGRATED IMPACT & COST RESULTS

Alternative	Internal costs	Resource Availability	Climate Change	Human Health	Environmental Quality	
Units	USD	MJ extra	kg CO2-eq	DALY	PDF*m2*yr	
Baseline	1.1E+2	1.5E+6	8.5E+5	5.1E-1	8.2E+3	
Baseline - CIP	1.2E+2	1.5E+6	8.5E+5	5.1E-1	8.2E+3	
New - current throughput	1.2E+2	8.4E+5	4.7E+5	2.8E-1	4.8E+3	
New - high throughput	9.6E+1	6.5E+5	3.7E+5	2.2E-1	3.8E+3	

Check it out!

SERDP-ESTCP Symposium, Washington, DC

Short Course: Sustainability Analysis -Capturing Life Cycle Impacts and Costs in Defense Systems

November 30, 2017

Kelly Scanlon

THANK YOU

Chemical & Material Risk Management Program

Office of the Assistant Secretary of Defense (Energy, Installations, and Environment)

kelly.a.scanlon4.civ@mail.mil

703-571-9073