

Advancing U.S. Marine Corps Warehouse Management Operations Through System Architecture and Analysis

Chris Melkonian Chief Engineer, GCSS-MC

Developed in collaboration with the Naval Postgraduate School

October 26, 2017

- A critical enabler of military superiority is operational availability
 - The probability warfighting systems will be functional when called upon
- A critical enabler of operational availability is delivering parts where and when needed in order to reduce downtime
- A critical enabler of reduced downtime is staging parts close to their demand
- Therefore, the need for warehouses (storing for future demand)

This presentation is not about hardware or software functionality...

it is about architectural behavior

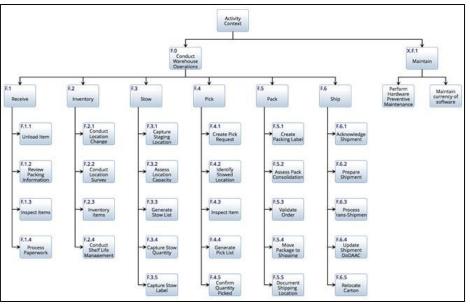
- System Overview
- Fault Tree Analysis
- Monte Carlo Analysis
- Findings and Conclusions

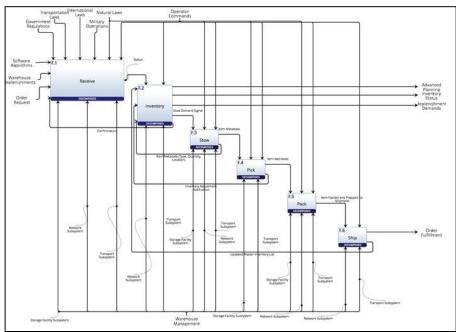
System Overview

Kitchen Pantry

USMC Warehouse

Amazon Distribution Center

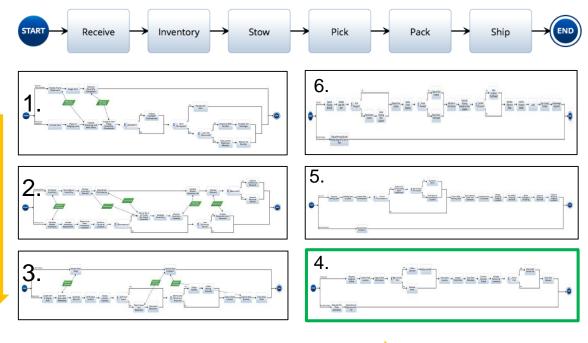

- Globally pre-positioned permanent and temporary locations for storage of items to satisfy military demands and high operational availability
 - Supply Maintenance Units (SMU)
 - Repairable Issue Points (RIP)
 - Using Units (UU)
 - Initial Issue Provisioning (IIP)
- Warehouse capability accounts for item:
 - Volume
 - Weight
 - HAZMAT category
 - Incompatibility with other materials
 - Shelf life



HOME OF THE MARINE CORPS ACQUISITION PROFESSIONALS

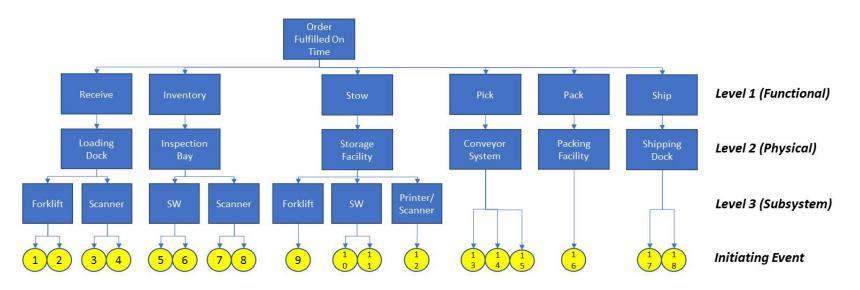
System Overview

Activity Context


IDEF0 Diagram

Warehouse Process Analysis

Operational View


System Top Level Functions

HOME OF THE MARINE CORPS ACQUISITION PROFESSIONALS

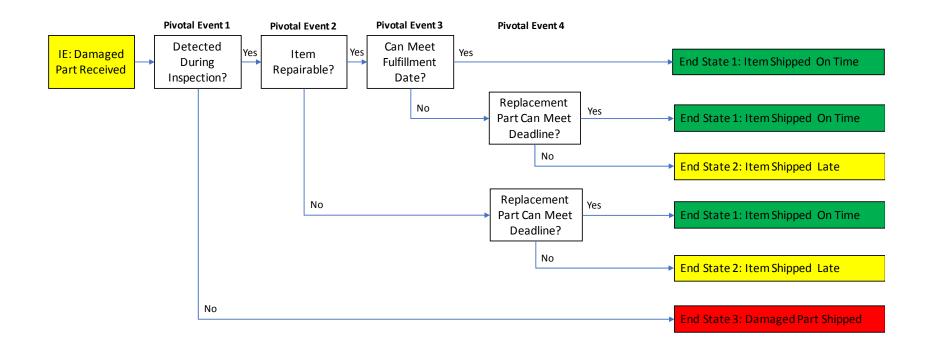
Master Logic Diagram (Identify Initiating Events)

- 1. Damage to Item
- 2. Incorrectly Placed
- 3. Malfunction
- 4. Incorrect Item Scanned
- 5. Incorrect Information Entered
- 6. Incorrect Shelf Life Entered
- 7. Malfunction
- 8. Faulty Data Entry
- 9. Faulty Equipment (Damage to Item)

10. Loss of Network Connectivity

- 11. Incorrect Inventory Record
- 12. Incorrectly Labeled
- 13. Incorrectly Placed (Stowed)

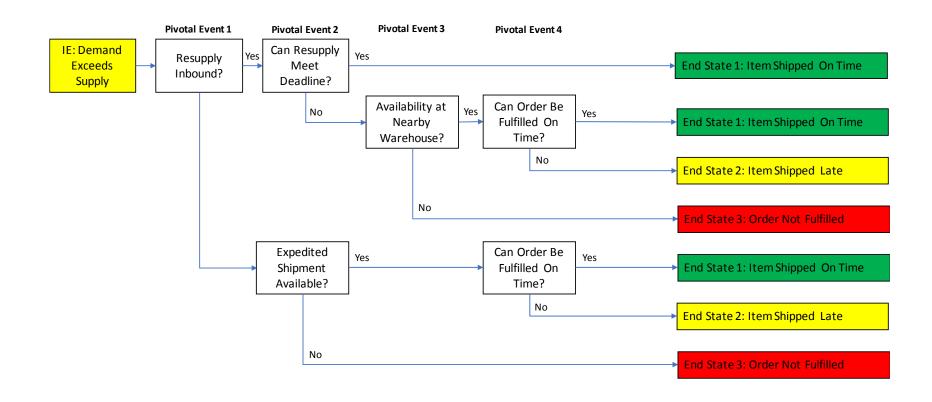
14. Inadequate Inventory


- 15. Incorrectly Picked Item
- 16. Incorrect Quantity Picked
- 17. Wrong Truck Loaded
- 18. Labels Not Verified

^{*} Reference: NASA/SP-2011-3421, 2nd Ed. 2011.

HOME OF THE MARINE CORPS ACQUISITION PROFESSIONALS

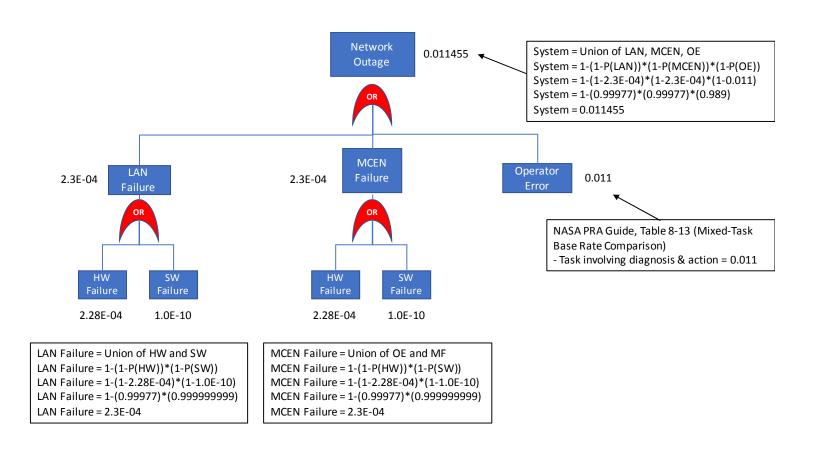
Event Tree (IE1: Damaged Part Received)



^{*} Reference: NASA/SP-2011-3421, 2nd Ed. 2011.

HOME OF THE MARINE CORPS ACQUISITION PROFESSIONALS

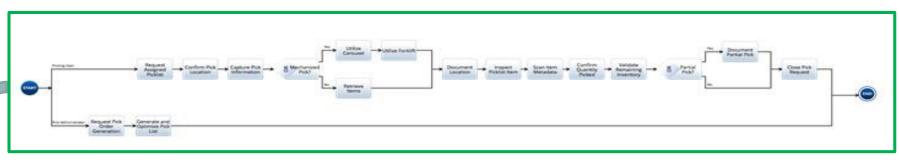
Event Tree (IE2: Demand Exceeds Supply)



^{*} Reference: NASA/SP-2011-3421, 2nd Ed. 2011.

HOME OF THE MARINE CORPS ACQUISITION PROFESSIONALS

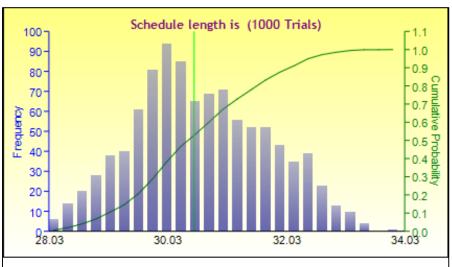
Fault Tree Analysis



^{*} Reference: NASA/SP-2011-3421, 2nd Ed. 2011.

HOME OF THE MARINE CORPS ACQUISITION PROFESSIONAL

Schedule Analysis Inputs (Pick Sub Process)


		Basic	Best		Worst			Path #1	Duration	P	ath #2	Duration	Path #3	Duration	Path #4	Duration
Task #	Title	Duration	Case	Most Likely	Case	Risk Factor	Distribution	1	0.200		1	0.200	1	0.200	1	0.200
		(min)	Case		Case			2	0.200		2	0.200	2	0.200	2	0.200
1	Request Pick Order	0.2	0.2	0.208	0.22	L	Triangular	3	0.200		3	0.200	3	0.200	3	0.200
2	Generate Pick Order	0.2	0.2	0.218	0.248	M	Triangular	4	1.000		4	1.000	4	1.000	4	1.000
3	Request Assigned Picklist	0.2	0.2	0.212	0.23	L+	Triangular	5	1.000		5	1.000	5	1.000	5	1.000
4	Confirm Pick Location	1	1	1.04	1.1	L	Triangular	6	5.000		8	5.000	8	5.000	6	5.000
5	Capture Pick Information	1	1	1.04	1.1	L	Triangular	7	10.000		9	1.000	9	1.000	7	10.000
6	Utilize Carousel	5	5	5.3	5.75	L+	Triangular	9	1.000		10	2.000	10	2.000	9	1.000
7	Utilize Forklift	10	10	12	15.5	Н	Triangular	10	2.000		11	0.200	11	0.200	10	2.000
8	Retrieve Items	5	5	5.3	5.75	L+	Triangular	11	0.200		12	1.000	12	1.000	11	0.200
9	Document Location	1	1	1.04	1.1	L	Triangular	12	1.000		13	3.000	13	3.000	12	1.000
10	Inspect Packlist Item	2	2	2.12	2.3	L+	Triangular	13	3.000		15	0.200	14	2.000	13	3.000
11	Scan Item Metadata	0.2	0.2	0.208	0.22	L	Triangular	14	2.000				15	0.200	15	0.200
12	Confirm Quantity Picked	1	1	1.04	1.1	L	Triangular	15	0.200							·
13	Validate Remaining Inventory	3	3	3.12	3.3	L	Triangular	Total Path #1	27.000	1	Total Path #2	15.000	Total Path #3	17.000	Total Path #4	25.000
14	Document Partial Pick	2	2	2.08	2.2	L	Triangular	P1 CR path?	1	P	2 CR path?	0	P3 CR path?	0	P4 CR path?	0
15	Close Request	0.2	0.2	0.208	0.22	L	Triangular	·					· ·			
	•							Schedule ler	ngth is		27.000					

How Long Should It Take From Order Fulfillment Request To Prepping For Shipment?

^{*} Reference: NASA/SP-2011-3421, 2nd Ed. 2011.

MARINE CORPS SYSTEMS COMMAND HOME OF THE MARINE CORPS ACQUISITION PROFESSIONALS

Schedule Analysis (Pick Sub-Process)

Type: Two-Tail, Lower: -Infinity, Upper: Infinity, Certainty: 100.0000%

Number of Trials 1000	
Mean 30.4831	
Median 30.3745	
Standard Deviation 1.1349	
Variance 1.2880	
Coefficient of Variation 0.0372	
Maximum 33.8297	
Minimum 27.8794	
Range 5.9504	
Skewness 0.1856	
Kurtosis -0.5743	
25% Percentile 29.6828	
75% Percentile 31.3082	
Percentage Error Precision at 95% Confidence	0.2308%

Baseline Run: Mean of 30.4831 minutes to pick an item from when an order is placed.

Concluding Remarks

- Process steps are consistent with current warehouse operations
 - Verified by warehouse operators
- Modeling enabled identification of largest contributing factors for each process
 - Varying operator skillsets
 - Varying pick items (low vs. high shelves, easier vs. more difficult items to pull)
 - Varying distances of pick item from forklift storage location
- Process baselining helped bring clarity to warehouse management operations
- Fault Tree Analyses uncovered potential failure modes and their probability of occurrence
 - Mitigating steps can be put into place to reduce the likelihood or consequence
- Schedule analysis applied quantitative methods
 - Establishes benchmarks that operators can assess against

Thank you for your time

Chris Melkonian

Marine Corps Systems Command

Global Combat Support System – Marine Corps

(GCSS-MC) Program Office

Phone: (703) 432-5817

Email: chris.melkonian@usmc.mil