Space and Missile Systems Center

Military GPS User Equipment Modernization

NDIA

20th Annual Systems Engineering Conference

Col Ed Hospodar
Chief, GPS User Equipment Division
Global Positioning Systems Directorate

UNCLASSIFIED//APPROVED FOR PUBLIC RELEASE

SPACE AND MISSILE SYSTEMS CENTER

Document N	4	UNCLASSIFIED	REPORT NO. TOR-1001(2525-17)-1
A66 06585	(U) Briefin	ng- Navigation Satellite Study	
C1 STANDAY ARCHIVES 5022206	Prepared	24 AUGUST 1966 by J. B. WOODFORD and H. NAKAMURA System Planning Division	PROPERTY OF ROSPACE COMPORATION RETURN TO LIBRARY
FOR REF	repared fo	or COMMANDER SPACE SYSTEMS DIVISION AIR FORCE SYSTEMS COMMAND OS ANGELES AIR FORCE STATION Los Angeles, California	
CLASSIFICAT By Authority of By AOC 18	ADG/4 Date 10/16/79	EL SEGUNDO TECHNICAL OPERATIONS • UNGLASSIFIED	AEROSPACE CORPORATION CONTRACT NO. AF 04(695)-1001

1966 Aerospace Corporation "Navigation Satellite Study"

SPACE AND MISSILE SYSTEMS CENTER

RANGE AND RANGE DIFFERENCE SYSTEMS

LOCATION OF COMPUTATION	COMPUTATION PERFORMED BY USER		COMPUTATION PERFORMED BY GROUND STATION	
NAVIGATION RADIO LINK	2 WAY	I WAY	2 WAY	I WAY
USER EQUIPMENT R = RECEIVER T = TRANSMITTER X = CRYSTAL CLOCK A = ATOMIC CLOCK C = COMPUTER	USER R T X C	GND STA R T A USER R X C	USER STA R T X C	USER STA USER T R R T A C X C X
APPLICABLE MEASUREMENTS 2 SATS PPH 3 SATS PPP 3 SATS APAPH 4 SATS APAPAP	√ (ALTIMETER) √	\ \(\sqrt{ALTIMETER} \) \(\sqrt{ALTIMETER} \) \(\sqrt{ALTIMETER} \) \(\sqrt{V} \)	√(ALTIMETER) √	V (ALTIMETER) V V(ALTIMETE
	USER ACTIVE	USER PASSIVE	USER ACTIVE	USER ACTIVE

- 1-way ranges, passive receivers, crystal oscillators
- <u>Passive</u> (one-way) reduces UE power and avoids detection
- Internal computer spreads the burden for 1,000's of users and avoids sending measurements
- Crystal oscillator minimizes UE SWAP-C and doesn't hurt accuracy
- Autonomous receivers

SWAP-C = Size, Weight, and Power - Cost

The widespread use of GPS and duplication by all other GNSS validate these choices

Civil Cooperation

- 3+ Billion civil & commercial users worldwide
- · Search and Rescue
- Civil Signals
 - L1 C/A (Original Signal)
- L2C (2nd Civil Signal)
- L5 (Aviation Safety of Life)
- L1C (International)

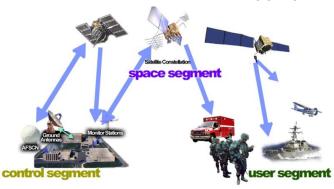
Spectrum

- World Radio Conference
- International Telecommunication Union
- Bilateral Agreements
- Adjacent Band Interference

35 Satellites / 31 Set Healthy Baseline Constellation: 24 Satellites

Satellite Block	Quantity	Average Age	Oldest
GPS IIR	12	15.7	20.1
GPS IIR-M	7	10.1	11.9
GPS IIF	12	3.6	7.3
Constellation	31	9.7	20.1

AS OF 1 SEP 17



Department of Transportation

• Federal Aviation Administration

Department of Homeland Security

U.S. Coast Guard

GPS Overview

Department of Defense

- Services (Army, Navy, AF, USMC)
- Agencies (NGA & DISA)
- US Naval Observatory
- PNT EXCOM
- GPS Partnership Council

Maintenance/Security

- All Level I and Level II
 - Worldwide Infrastructure
 - NATO Repair Facility
- Develop & Publish ICDs Annually
- Public ICWG: Worldwide Involvement
- Materials Available at: gps.gov/technical/icwg
- Update GPS.gov Webpage
- Load Operational Software on over 970,000 SAASM Receivers
- Distribute PRNs for the World
 - 120 for US and 90 for GNSS

International Cooperation

- 57 Authorized Allied Users
 - 25+ Years of Cooperation
- GNSS
 - Europe Galileo
 - China Beidou
 - Russia GLONASS
- Japan QZSS
- India NAVIC

GPS Modernization

Space System (Satellites)

Legacy (GPS IIA/IIR)

- Basic GPS
- NUDET (Nuclear Detonation) **Detection System (NDS)**

GPS IIR-M

- 2nd Civil signal (L2C)
- New Military signal
- Increased Anti-Jam power

GPS IIF

- 3rd Civil Signal (L5)
- Longer Life
- Better Clocks

GPS III (SV01-10)

- Accuracy & Power
- Increased Anti-Jam power
- Inherent Signal Integrity
- Common L1C Signal
- Longer Life

GPS III (SV11+)

- · Unified S-Band Telemetry, **Tracking & Commanding**
- Search & Rescue (SAR) **Payload**
- Laser Retroreflector Array
- Redesigned NDS Payload
- Regional Military Protect (RMP)

Ground

Legacy (OCS)

- Mainframe System
- Command & Control
- Signal Monitoring

AEP

- Distributed Architecture
- Increased Signal Monitoring Coverage
- Security
- Accuracy
- Launch And **Disposal Operations**

OCX Block 0

GPS III Launch & Checkout

GPS III Contingency Ops (COps)

GPS III Mission on AEP

M-Code Early Use (MCEU)

Operational M-Code on AEP

OCX Block 1

- Fly Constellation & GPS III
- Begin New Signal Control
- · Upgraded Information Assurance

OCX Block 2+

- Control all signals
- Capability On-Ramps
- GPS III Evolution

Equipment System (Receivers

Legacy (PLGR/GAS-1/MAGR)

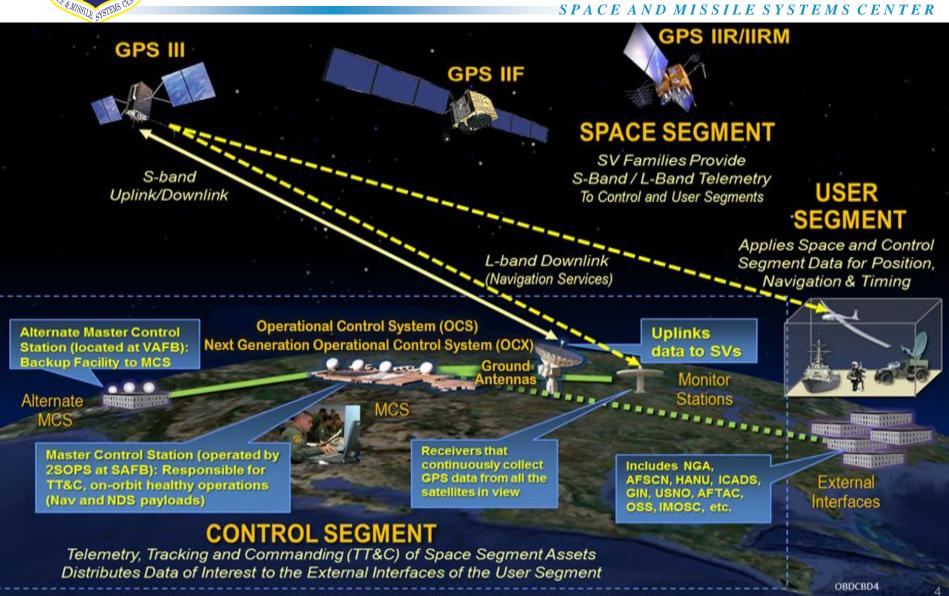
First Generation System

User Equipment

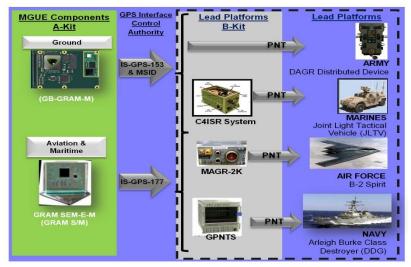
- · Improved Anti-Jam & Systems
- Reduced Size, Weight & Power

Upgraded Antennas

Improved Anti-Jam Antennas


Modernized

- M-Code Receivers
- Common GPS Modules
- Increased Access/ Power with M-Code
- Increased Accuracy
- Increased Availability
- Increased Anti-Tamper/ Anti-Spoof
- Increased Acquisition in Jamming

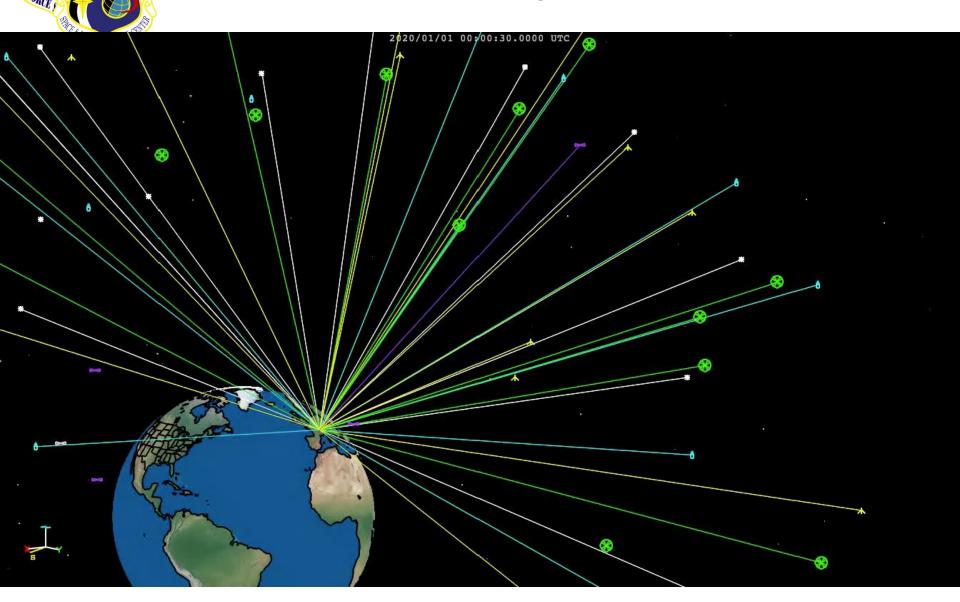

GPS Enterprise Operational View

Military GPS User Equipment (MGUE)

- Commercial market-driven acquisition approach
- Three vendors developing modernized receiver cards
 - Ground form factor
 - Aviation/Maritime form factor
- Current Status
 - L-3 Technologies first to receive security certification Oct 2016
 - Developmental testing ongoing
 - Conducting early integration activities to support Service-nominated Lead Platforms

Military GPS User Equipment Prototype GPS Receiver Flight Tested on B-2

SPACE AND MISSILE SYSTEMS CENTER


Military GPS User Equipment Demonstrated in B-2

MGUE Precision Guided Munitions Test


Looking Ahead: Multi-GNSS

Perspectives

- GPS is the Global Utility
 - Committed to maintaining uninterrupted service
 - "The Gold Standard"
- Modernizing to enhance GPS resiliency by:
 - Upgrading all three segments
 - Moving to M-Code
 - Adding civil signals
- Exploring multi-GNSS potential

