Scaling Model-Based System Engineering Practices for System of Systems Applications: Analytic Methods

October 2017

Laura Antul lantul@mitre.org Dr. Aleksandra Markina-Khusid <u>amk@mitre.org</u> Dr. Ryan Jacobs rjacobs<u>@mitre.org</u> Janna Kamenetsky jannak@mitre.org

NDIA 20th Annual Systems Engineering Conference http://www.ndia.org/events/2017/10/23/20th-systems-engineering-conference

Approved for Public Release; Distribution Unlimited Case #

© 2016 The MITRE Corporation. All rights reserved.

Motivation

As-is for Evaluating Architectures

SoS Analysis of Alternatives

MITRE

Robustness Metric (Algebraic Connectivity Value)

Represents average difficulty of isolating a node

- Second smallest eigenvalue of a Laplacian Matrix
- Inputs:
 - Degree Matrix
 - Diagonal matrix that contains the number of nodes adjacent to a given node

$$D_{ij} = \begin{cases} d_i & \text{degree of component } i \text{ when } i = j \\ 0 & \text{otherwise} \end{cases}$$

Adjacency Matrix

 Symmetric matrix that contains a 1 if two given nodes are adjacent and 0 otherwise

$$A_{ij} = \left\{ \begin{array}{ll} 1 & \forall [(i,j)|(i \neq j) \text{ and } (i,j) \in \Delta] \\ 0 & \text{otherwise} \end{array} \right\}$$

Reference: H. Mehrpouyan, B. Haley, A. Dong, I. Y. Tumer, and C. Hoyle, "Resiliency analysis for complex engineered system design," *Artificial Intelligence for Engineering Design, Analysis and Manufacturing*, vol. 29, no. 01, pp. 93–108, Jan. 2015.

Identifying Robust SoS Architectures

© 2016 The MITRE Corporation. All rights reserved. For Internal MITRE Use.

```
MITRE
```

Multi-layer Architectural Analysis

For Internal MITRE Use.

© 2016 The MITRE Corporation. All rights reserved.

Example Architecture

© 2016 The MITRE Corporation. All rights reserved. For Internal MITRE Use.

MITRE

Mapping Architecture to Multilayer Graph – Intralayer Graph Representation

Mapping Architecture to Multilayer Graph – Intralayer Adjacency Representation

© 2016 The MITRE Corporation. All rights reserved. For Internal MITRE Use.

Mapping Architecture to Multilayer Graph – Intralayer Adjacency Representation

Mapping Architecture to Multilayer Graph – Interlayer Matrix Representation

Mapping Architecture to Multilayer Graph – Adding Interlayer to Intralayer in Matrix

	VHF		HF	HF												
	Ra	dio	Ra	Radio Link 11				Link 16				SATCOM				
VHF Radio	0	1	1	0	0	0	0	1	0	0	0	1	0	0	0	
	1	0	0	1	0	0	0	0	1	0	0	0	1	0	0	
HF Radio	1	0	0	1	0	0	0	1	0	0	0	1	0	0	0	
	0	1	1	0	0	0	0	0	1	0	0	0	1	0	0	
	0	0	0	0	0	1	0	0	1	0	0	0	1	0	0	
Link 11	0	0	0	0	1	0	1	0	0	1	0	0	0	1	0	
	0	0	0	0	0	1	0	0	0	0	1	0	0	0	1	
	1	0	1	0	0	0	0	0	1	0	0	1	0	0	0	
Link 16	0	1	0	1	1	0	0	1	0	1	0	0	1	0	0	
	0	0	0	0	0	1	0	0	1	0	1	0	0	1	0	
	0	0	0	0	0	0	1	0	0	1	0	0	0	0	1	
	1	0	1	0	0	0	0	1	0	0	0	0	1	0	0	
SATCOM	0	1	0	1	1	0	0	0	1	0	0	1	0	1	0	
	0	0	0	0	0	1	0	0	0	1	0	0	1	0	1	
	0	0	0	0	0	0	1	0	0	0	1	0	0	1	0	
VHF Radio		Link 16					Link 11				HF Radio					SATCOM

Summary

Results

- Developed a scalable rapid analysis capability for MBSE software tools
- Identified a proxy for resilience that can be measured using lightweight analysis techniques
- Tested the analysis method on notional architectures and compared the results with a low fidelity operational modeling and simulation tool

Lessons Learned

- Detailed analysis will have to accompany the graph theoretic analysis to account for operationally critical architectural components
- Based on the domain the optimal graph theoretic value may vary

