Scaling Model-Based System Engineering Practices for System of Systems Applications: Software Methods

October 2017

Janna Kamenetsky jannak@mitre.org Laura Antul lantul@mitre.org Dr. Aleksandra Markina-Khusid <u>amk@mitre.org</u> Matt Cotter <u>mjcotter@mitre.org</u> Dr. Judith Dahmann jdahmann@mitre.org

NDIA 20th Annual Systems Engineering Conference http://www.ndia.org/events/2017/10/23/20th-systems-engineering-conference

Technical Approach: Inheritable Architectures

© 2016 The MITRE Corporation. All rights reserved.

For internal MITRE use

Base Model Architecture

Base/Derivative Model Framework

- Base Model captures key functional SoS architecture
- Derivative model represent domainspecific behavior

This approach helps:

- Accelerate domain model development via Base Model reuse
- Rapidly evaluate different options utilizing predefined stereotypes and analysis engines
- Iterative design to continuously refine common SoS functions

Base Model: High Level Structure

Base Model: Inheritance Structure

BASE Model: Inheritable Types

Base Model CSV Importer

CSV Importer Utility

Base Model GUI

- A MATLAB GUI has been built to simplify the process of populating a connectivity matrix
- The tool outputs a CSV file that can then be imported into the architecture model

		itsAOC_1	itsC2_1	itsTanker_1	itsFighter_1	itsFighter_2	
	itsAOC_1	0	0	0	0	0	
Setup Objects	itsC2_1	0	0	0	1	1	
	itsTanker_1	0	0	0	0	0	
Class Fighter	itsFighter_1	0	1	0	0	0	
	itsFighter_2	0	1	0	0	0	
Multinicity 2							
mungachy L							
Start 1							
Delete Object(s) Create Object(s)							
Setup Connections							
tsAOC_1 A tsAOC_1 A							
tsC2_1 tsC2_1 tsC2_1 Create Connect	n(s)						
tsFighter_1 itsFighter_1							
itsFighter_2 itsFighter_2			scenario.cs	M		Sav	е
Delete Connect	in(s)						

Demonstration

Q2 Metrics – Experiments

Qualitative

- <u>Experiment 1</u>: Give the base model to MITRE employees to use on their projects as they see fit. Collect feedback.
 - Likes, dislikes, pain points, time savings estimates, description of use case, experience level
 - Time Cost: 30 min interview

Quantitative

- <u>Experiment 2</u>: Give MITRE employees a sample coms network and have them create it by hand and by using the CSV importer
 - Networks of different sizes
 - Measure time to complete exercise
 - Time Cost: Approx. 45 min per data point
- Experiment 3: Randomized control trial with ~20 new interns
 - Group A: Create reference model from scratch
 - Group B: Create reference model using base model

Metrics – Experiment 1 Results

- Project 1:
 - 3 reviewers
 - Not adopted

Feedback:

- "...This base model would be a great reference, e.g., utilizing the package structure framework used, with the inheritable architectures and the focus on reuse."
- "...We expect to draw ideas from it as we build our own model."
- "We intend to focus more on activity diagrams than state charts."
- "Our project is not in the context of the Air Force, so we would have to change the block and activity names."
- "Overall it is not a good fit for [our project]."

Project 2:

- 1 reviewer
- Adopted

Feedback:

- Qualitative

Base Model state charts look too "indepth", "specific", need to take a closer look to see if they will work for my use case. But if they work, "that would be awesome", it will save tons of time.

- Pseudo - Quantitative

Estimated time savings of 40 hours on work completed so far.

<u>Update</u>

Base Model has proven a good fit for project and has been used extensively.

Metrics – Experiment 2 Results

The Scenario

This is a hypothetical Air Force kill-chain scenario consisting of 1 ground control station (AOC), 1 air command and control (C2), 4 Fighter Jets, 4 Unmanned Aircraft Systems (UASs), and 1 Tanker.

- AOC needs to be able to communicate with C2, since C2 alerts AOC when there is a threat and then gets its orders from the ground.
- C2 also needs to be able to communicate with all fighters and the Tanker during the mission.
- Also, all fighters and UASs need to be able to communicate with the Tanker, since they'll occasionally need to refuel during flight.
- Every fighter needs to be able to communicate with every other fighter, and
- every UAS needs to be able to communicate with every other UAS.
- Moreover, every fighter should be able to communicate with every UAS, and vice versa.
 You may assume all communication channels are bi-directional (any communication matrix you set up should be symmetric with respect to rows and columns).

<u>Time savings</u> Mean: 39% Standard Dev: 12%

Metrics – Experiment 2 Results

With tool Without tool

<u>Time savings</u> Mean: 63% Standard Dev: 14%

<u>Average mistakes</u> Without tool: 9.2 With tool: 0.8

