Network Surface Combatant RSDE Pilot Study

NDIA Systems Engineering Conference 25 October 2017

Ζ

_

ហ

>

 $\mathbf{\nabla}$

Ш

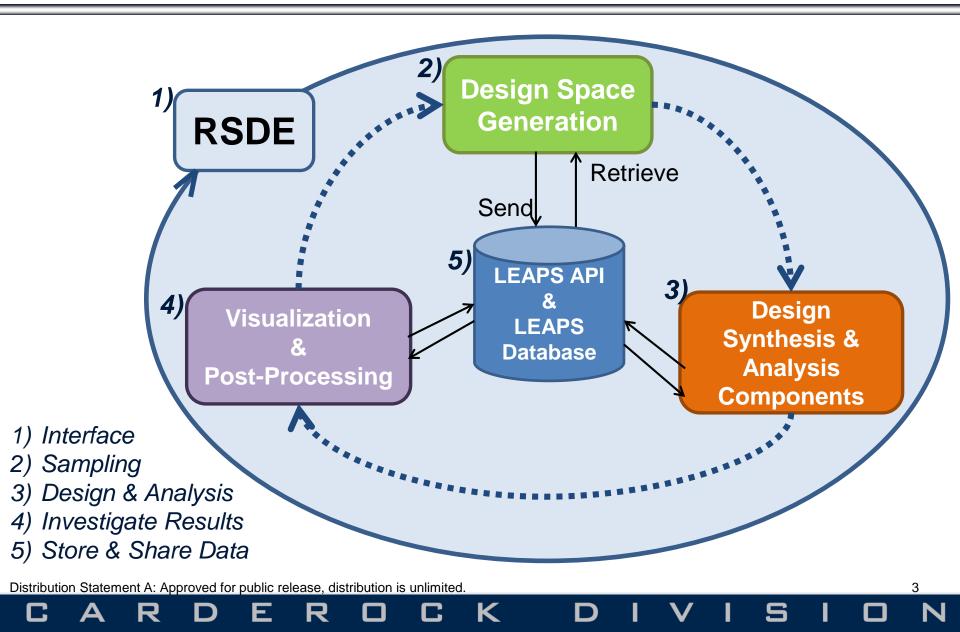
Ľ

4

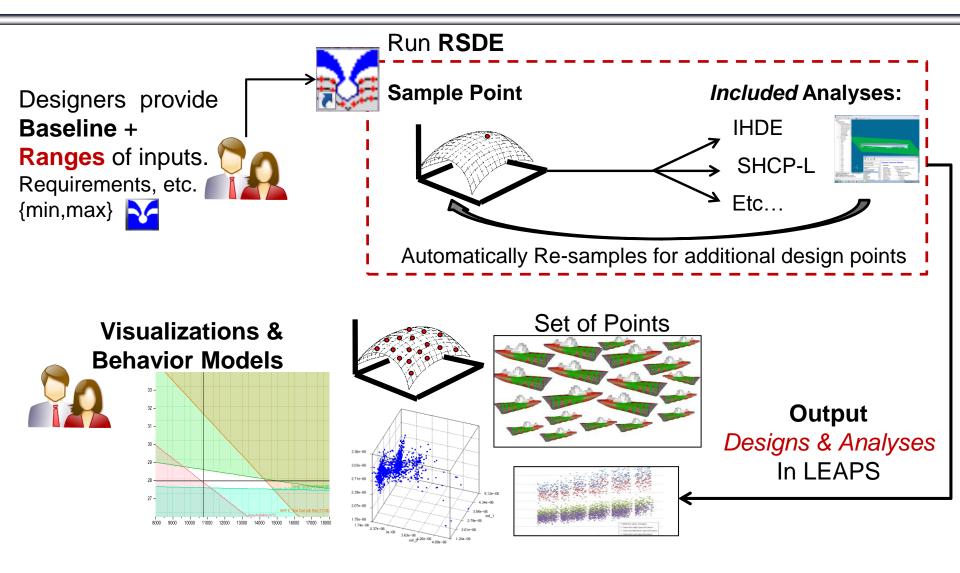
C

Presenter: Dr. Douglas Rigterink Code: 823

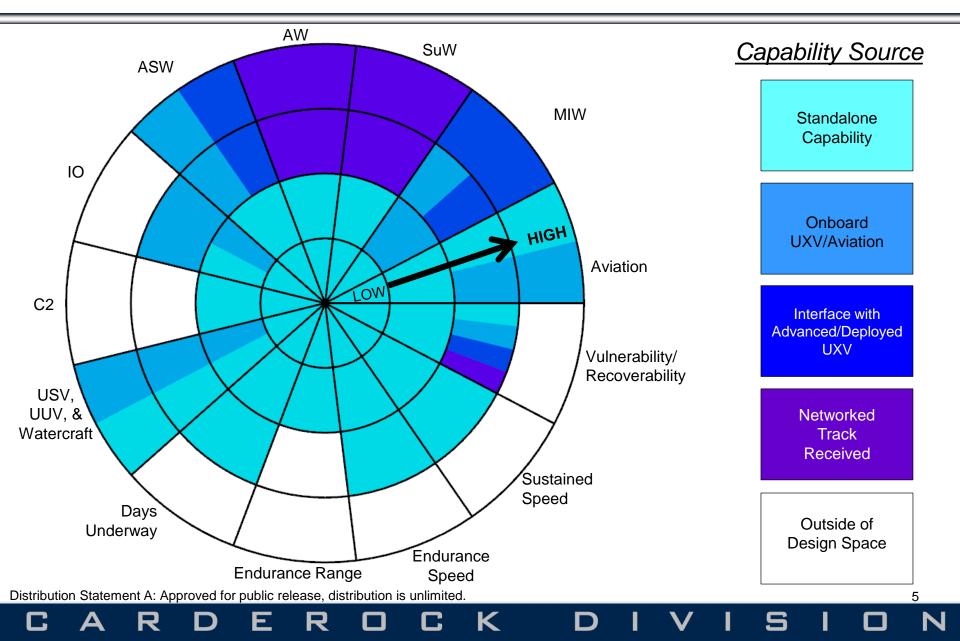
douglas.rigterink@navy.mil | 301-227-5886



- Inform the setup of Future Surface Combatant AoA studies.
 - Baseline designs from FSC wargame studies, trading reduced sensing capabilities for weapon systems
- Familiarize NSWCCD Code 824 Future Ship and Submarines Concepts Branch with the use of RSDE for future studies and provide feedback to improve the software.



RSDE Functional Product Architecture


Design Space Exploration

Κ

Operational Design Space

• Combat System Major Trade-offs:

- Fixed array vs. rotating array radar
- Number of VLS cells (16 to 96)
- Main gun size
- Sonobouy system
- Embarked Systems Trade-offs:
 - Number of manned and unmanned aviation units
 - Number and size of small boats/equivalent USV & UUVs
 - Boat launch location
- Naval Architecture Trade-offs:
 - Length
 - Propulsion system type mechanical vs. IPES
 - Engine separation survivability
 - Auxiliary propulsion unit survivability

С

Δ

Low Magnitude DSE Concepts

Description FAST Study Variant	Length Waterline	Propulsion	Engine Room Separation	VLS Cells	Relative CSEL Weight/Elec	Helo	UAV	Boats/USV/UUV
NSC Analog Patrol 1 Combatant	130m	2 shaft CODAG	No	32	Baseline	1	2x TERN UAV	2x 11m RHIB equivalent, stern launch
Euro Style Combatant Patrol 2 Combatant	123m	2 shaft CODAG	Yes	16	0.91 / 1.02	1	2x TERN UAV	2x 11m RHIB equivalent, side launch
IPES Small Surface Combatant Patrol 2 Combatant	117m	1 Shaft IPES + APU	No	16	0.91 / 1.02	1	2x TERN UAV	2x 7m RHIB equivalents, side launch
Small Destroyer Battle Group Escort Variant 5 w/ downsized radar	148m	2 shaft, 4 COGAG	Yes	96	1.71 / 3.04	1 or 2	3x TERN UAV	2x 11m RHIB equivalent, side launch
APU Destroyer Battle Group Escort Variant 6	155m	2 shaft IPES + APU	No	96	1.73 / 3.17	2	3x TERN UAV	2x 11m RHIB equivalent, launch method under evaluation
IPES Surface Combatant Patrol 1 Combatant	136m	2 shaft IPES	No	32	1 / 1	1	2x Tern UAV	2x 7m RHIB equivalents, side launch
1 Shaft Destroyer Battle Group Escort Variant 5 w/ downsized radar	141m	1 shaft GT + APU	No	96	1.71 / 3.04	2	3x TERN UAV	2x 11m RHIB equivalent, side launch

Κ

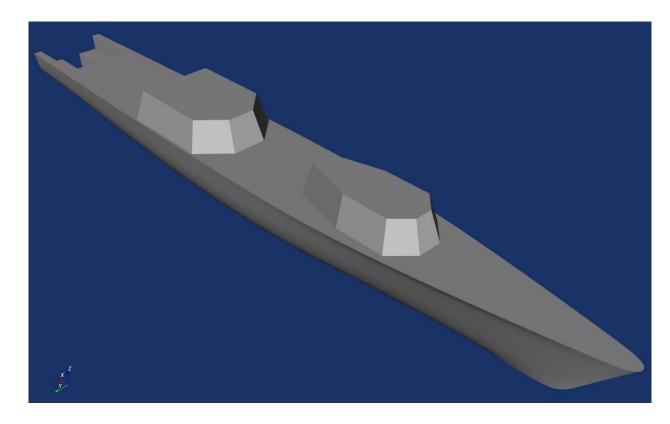
D

7

J

5

Distribution Statement A: Approved for public release, distribution is unlimited.


F

R

R

National Security Cutter Analog

FAST Study Design Variant	Length Waterline	Propulsion	Engine Room Separation	VLS Cells	Helo	UAV	Boats/USV/UUV
Patrol 1 Combatant	130m	2 shaft CODAG	1 bulkhead separation	32	1	2x TERN UAV	2x 11m RHIB equivalent, stern launch

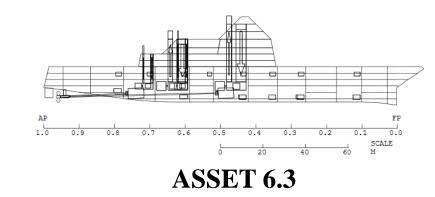
С

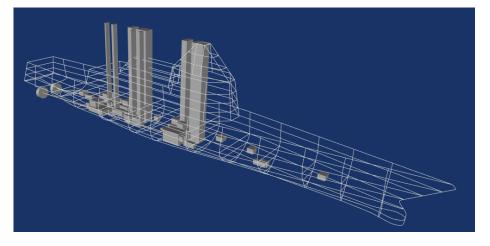
Κ

8

5

Distribution Statement A: Approved for public release, distribution is unlimited.

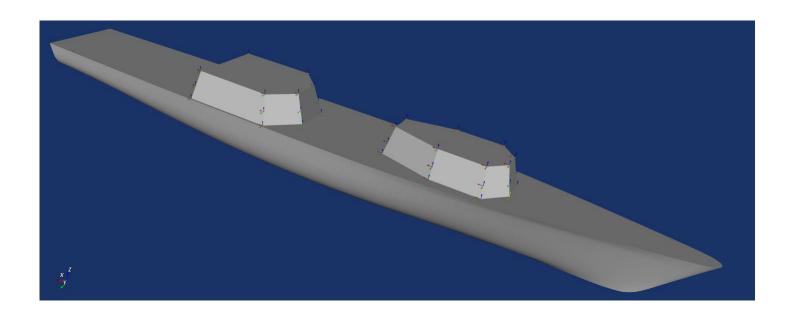

E


R

R

Automated Damage Stability

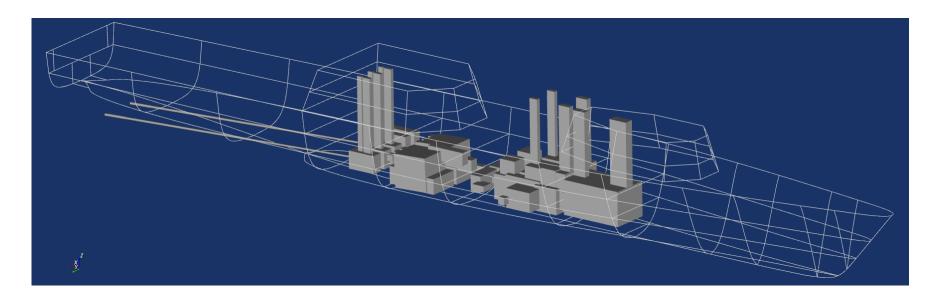
RSDE 3.0


Distribution Statement A: Approved for public release, distribution is unlimited.

		D	amage St	ability		
	11.2		J	•		
]					
	11 -			_		
	-					
ᢄ	10.8					2
J	10.6					2
ě						
<u>da</u>	10.4 -		_			
<u>[</u>						-
4	10.2					
						=
	10 -					2
	1					
	9.8					_
	9.8 - 8,000 8,500	9,000 D	9,500 Displacemer),500 11	٦ ,00
),500 11 Calc Status	ר ,00
1	8,000 8,500	ĊD	Displacemen	nt (t)		, ,00
1 2	8,000 8,500 Flooding Scenario	D	Displacemer Allowable KG	t (t) Limiting Criteria	Calc Status	,00
	8,000 8,500 Flooding Scenario STBD, Centered at x = -7.604	D isplacemer 8000.0	Displacemen Allowable KG 11.054	t (t) Limiting Criteria Area Ratio	Calc Status VALID	,00
2	Rooding Scenario STBD, Centered at x = -7.604	isplacemer 8000.0 8658.1	Allowable KG 11.054 11.005	Limiting Criteria Area Ratio Area Ratio	Calc Status VALID VALID	,00
2 3	8,000 8,500 Flooding Scenario STBD, Centered at x = -7.604 STBD, Centered at x = -7.604 STBD, Centered at x = -7.604	isplacemer 8000.0 8658.1 9000.0	Displacemen Allowable KG 11.054 11.005 10.975	Limiting Criteria Area Ratio Area Ratio Required GZMax-GH	Calc Status VALID VALID VALID	,00
2 3 4	8,000 8,500 Flooding Scenario STBD, Centered at x = -7.604 STBD, Centered at x = -7.604 STBD, Centered at x = -7.604 STBD, Centered at x = -7.604	isplacemen 8000.0 8658.1 9000.0 10000.0	Allowable KG 11.054 11.005 10.975 10.879	tt (t) Limiting Criteria Area Ratio Area Ratio Required GZMax-GH Required GZMax-GH	Calc Status VALID VALID VALID VALID	, oo
2 3 4 5	8,000 8,500 Flooding Scenario STBD, Centered at x = -7.604 STBD, Centered at x = -7.604	isplacemer 8000.0 8658.1 9000.0 10000.0 10977.7	Displacemer Allowable KG 11.054 11.005 10.975 10.879 10.780	tt (t) Limiting Criteria Area Ratio Area Ratio Required GZMax-GH Required GZMax-GH	Calc Status VALID VALID VALID VALID VALID	,00
2 3 4 5 6	8,000 8,500 Flooding Scenario STBD, Centered at x = -7.604	isplacemer 8000.0 8658.1 9000.0 10000.0 10977.7 11000.0	Displacemer Allowable KG 11.054 11.005 10.975 10.879 10.780 10.777	tt (t) Limiting Criteria Area Ratio Area Ratio Required GZMax-GH Required GZMax-GH Required GZMax-GH	Calc Status VALID VALID VALID VALID VALID VALID	,00
2 3 4 5 6 7	8,000 8,500 Flooding Scenario STBD, Centered at x = -7.604 STBD, Centered at x = -7.604	isplacemer 8000.0 8658.1 9000.0 10000.0 10977.7 11000.0 8000.0	Displacemer Allowable KG 11.054 11.005 10.975 10.879 10.780 10.777 11.118	tt (t) Limiting Criteria Area Ratio Area Ratio Required GZMax-GH Required GZMax-GH Required GZMax-GH Required GZMax-GH Area Ratio	Calc Status VALID VALID VALID VALID VALID VALID	,00
2 3 4 5 6 7 8 9	8,000 8,500 Flooding Scenario STBD, Centered at x = -7.604 STBD, Centered at x = 4.246 STBD, Centered at x = 4.246	isplacemer 8000.0 8658.1 9000.0 10000.0 10977.7 11000.0 8000.0 8658.1	Displacemen Allowable KG 11.054 11.055 10.975 10.879 10.780 10.777 11.118 11.037	tt (t) Limiting Criteria Area Ratio Area Ratio Required GZMax-GH Required GZMax-GH Required GZMax-GH Area Ratio Required GZMax-GH	Calc Status VALID VALID VALID VALID VALID VALID VALID	,00

Automated 15% LBP Damage Scenario Analysis

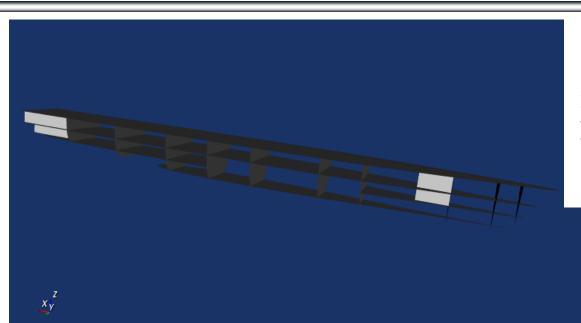
Deckhouse Modeling



- Deckhouses created based on constraint points
- Constraint points tied to design features e.g. the intersection of a deck and bulkhead or other constraint points
- Constraint points will be variables in RSDE 3.1 Design Space Explorations

10

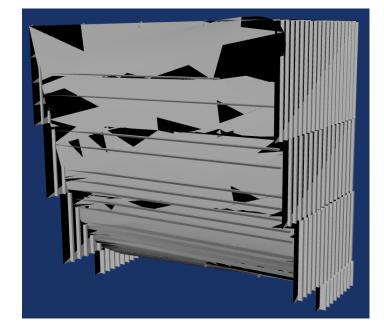
Ship Systems Arrangements


- Machinery arrangement shown above is <u>NOT</u> representative of actual engine room arrangement
 - Developing & documenting process for modeling machinery arrangements that are beyond scope of RSDE machinery theory

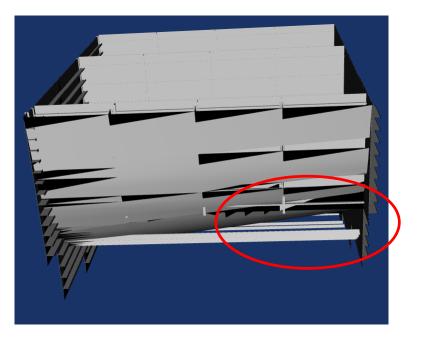
11

- Large set of machinery components are represented in model
- Increased control over placement of components

Structural Arrangement Flexibility


Simplified placement and removal of transverse and longitudinal bulkheads

12


Ability to remove hull shell structural members to model stern launch areas

3D Structural Models

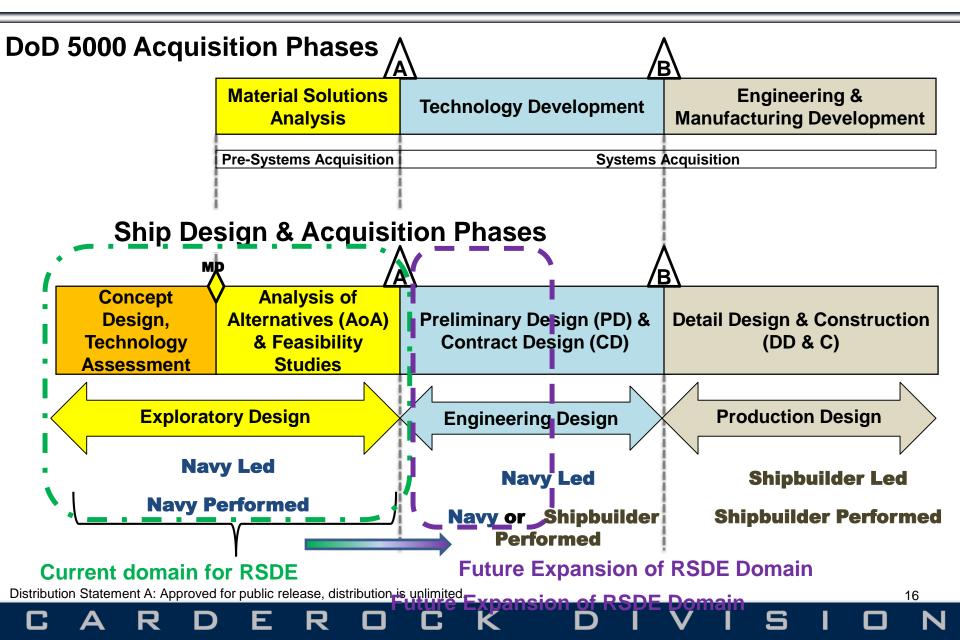
3D structural models are now used for weight estimation

Structural theory assumes linear stiffeners, leading to gaps

13

- Mission requirements as defined in capability concept wheel appear to be feasible
 - Modeling mission systems to the level of detail that is necessary for mission effectiveness analysis is challenging
 - Traditional Naval Architectural disciplines are strengths of RSDE
- Initial damage stability analysis shows smaller hulls will have issues with meeting damage stability flooding criteria due to large engine room and weapons systems spaces within the hull
 - Embedded SHCP-L damage stability module allows designers to design to damage stability requirements at beginning of design rather than test against requirements at end of design
- Adding unmanned vehicles has a significant impact on manning
 - 1 UAV can require up to 7 additional crew
- Impact of different RHIB launch locations has not be studied yet, but can be analyzed using embedded Ship Motions Program module

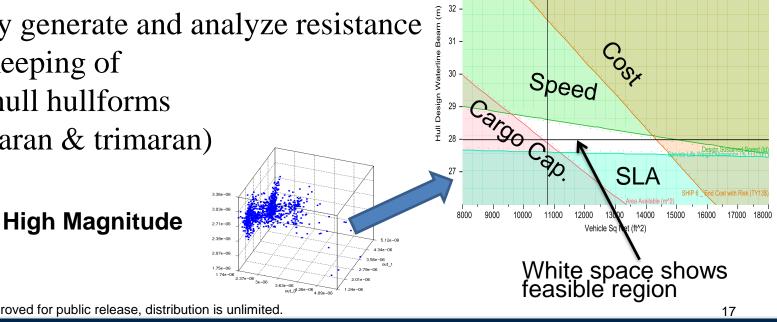
14



- The initial learning curve of using the new RSDE software was steep but as new training materials and software updates have become available the process has rapidly improved.
- Near term updates to RSDE allow for reuse of information between models streamlining the model development process.
- The study has familiarized members of NSWCCD Code 824 Future Ship and Submarines Concept Branch with RSDE for use in future studies and has provided the RSDE Development Team (Code 823) useful feedback for improving the software.
 - Dr. Alexander Gray (823) RSDE Product Lead
 - Pedro Muslera (823) RSDE Implementation Team
 - Drake Platenberg (824) FSC Baseline Development Task
 - James Lovenbury (824) UUV Design Tool Development
 - Nick Mullican (823) RSDE Development Team
 - Mark A. Parsons (823) Ph.D. Student at Virginia Tech researching Concept Effectiveness and Vulnerability Analyses with Dr. Alan Brown

15

The Future of RSDE



RSDE v3.1 - Release Dec. 2017

- *Improved*, High Magnitude DSE (monohull)
 - Rapidly generate 1000's of ship concepts
 - Now with SHCP & IHDE integrated

Multi-hull hullform study DSE

Rapidly generate and analyze resistance & seakeeping of multi-hull hullforms (catamaran & trimaran)

33 -

- Roadmap developed to 2025, planned development:
 - Submarine Design Space Exploration
 - Systems Design (Machinery, Distribution, CPES)
 - Topside Design
 - Automated Costing
 - Arrangements (Manual & Automated)
 - Damage Stability Enhancements (Downflooding)
 - Predictive Structural Loads
 - Generative Structures
- Constant emphasis on Decision Support, Visualization, and Data Analysis Capabilities and Tool Flexibility Improvements

Network Surface Combatant RSDE Pilot Study

NDIA Systems Engineering Conference 25 October 2017

Ζ

_

ហ

>

 $\mathbf{\nabla}$

Ш

Ľ

4

C

Presenter: Dr. Douglas Rigterink Code: 823

douglas.rigterink@navy.mil | 301-227-5886