
0

19701
Leveraging Cybersecurity Tools

For Software Safety

Focusing (Some) Static Analysis on
Safety-Critical Software

Stuart A. Whitford

Booz Allen Hamilton

20th Annual NDIA Systems Engineering Conference

Springfield, VA

25 October 2017

1

Agenda

• Some Givens

• Safety versus Security

• General Static Analysis: Dealing with false positives and false
negatives

• Targeted Static Analysis: Proving specific properties and assertions

• Coordinating the Efforts

• Conclusion

NOTE: Blue highlighting in this presentation is for emphasis.

2

Some Givens

[C]ybersecurity applies to weapons systems . . . [and] is a critical

priority for the DoD. . . incorporate code reviews and architecture

reviews against incremental builds to reduce vulnerabilities in any

custom software, including via automated scanning tools (e.g.,

static analysis).
[The DoD Program Manager’s Guidebook for Integrating the
Cybersecurity Risk Management Framework (RMF) into the System
Acquisition Lifecycle, September 2015]

DoD will continue to assess Defense Federal Acquisition

Regulation Supplement (DFARS) rules . . . to ensure they mature .

. . in a manner consistent with known standards for protecting data

from cyber adversaries, to include standards . . . by the National

Institute of Standards and Technology (NIST).
[The Department of Defense Cyber Strategy, April 2015]

Safety vs SecurityThe Givens General Analysis Targeted Analysis Coordination Conclusion

3

More Givens

Source code should be periodically reviewed using automated tools or

manual spot check for common programming errors . . . as part of the

software development QA process.
[NIST Special Publication 800-64 revision 2, Security Considerations in the
System Development Life Cycle, October 2008]

The Program Manager will integrate ESOH risk management into the
overall systems engineering process for all engineering activities
throughout the system’s life cycle. . . The Program Manager will use the
methodology in MIL-STD-882E.

[DoD Instruction 5000.02, “Operation of the Defense Acquisition System,”
January 7, 2015]

Level of Rigor Tasks [for Software Criticality Index (SwCI) 1/highest] . . .
Program shall perform analysis of requirements, architecture, design,
and code; and conduct in-depth safety-specific testing.

[MIL-STD-882E, “DoD Standard Practice for System Safety,” May 11, 2012]

Safety vs SecurityThe Givens General Analysis Targeted Analysis Coordination Conclusion

4

Software Safety versus Software Security

Software Security

Focus

• External interface

vulnerabilities

• Vulnerabilities to

malicious intent

Software Safety

Focus

• Internal data corruption

vulnerabilities

• Time critical latency

issues

• Vulnerabilities to

unintended mistakes in

design or implementation

There is some overlap, but the priorities

and focus are different.

Safety vs SecurityThe Givens General Analysis Targeted Analysis Coordination Conclusion

5

Software Safety versus Software Security

Software Security

Focus

• Missing/incorrect

authentication or

authorization

• Injection of malicious

data or scripts

• Uncontrolled data or

buffer overflow

Software Safety

Focus

• Race conditions with

safety-critical data

• Latency issues with

safety-critical response

or data update

• Inadequate or erroneous

feedback to an operator

Safety vs SecurityThe Givens General Analysis Targeted Analysis Coordination Conclusion

6

Software Safety versus Software Security

Safety vs SecurityThe Givens General Analysis Targeted Analysis Coordination Conclusion

Security issues tend to be at the external interfaces

of a software application.

Software

application

Security

issue

Security

issue

Security

issue

Security

issue

7

Software Safety versus Software Security

Safety vs SecurityThe Givens General Analysis Targeted Analysis Coordination Conclusion

Safety issues tend to be in the core system

functionality of a software application.

Software

application

Safety

issue

Safety

issue

Safety

issue

Safety

issue

8

General Static Analysis:
Dealing with false positives and

false negatives

9

General Static Analysis

General static source code analysis

– Flagging programming errors

• MITRE’s Common Weakness Enumeration (CWE)

• False positives and false negatives

Targeted static analysis

– Proving targeted assertions

– Counter examples

– Program slicing

Safety vs SecurityThe Givens General Analysis Targeted Analysis Coordination Conclusion

10

General Static Source Code Analysis

Flagging programming errors

– MITRE’s Common Weakness Enumeration (CWE)

– Security CWE’s

• Open Web Application Security Project (OWASP) Top 10 CWE’s

o Injection / Broken Authentication / Cross-site Scripting /
Insecure Direct Object References / Security Misconfiguration /
etc.

– Safety CWE’s

• Data corruption CWE’s

o Shared resource race condition / Buffer Overflow / Improper
Validation of an Array Index / Pointer Issues / Incorrect Type
Conversion / etc.

Safety vs SecurityThe Givens General Analysis Targeted Analysis Coordination Conclusion

11

Safety Critical Data ‘Corruption’

A correctly implemented algorithm operating on corrupted or stale

safety-critical data can have unintended catastrophic results.

Some sources of corrupted data:

• Noise in digital message transmission

• Physical events/upsets during data storage

• Multi-threaded shared data

• Shared data between ‘main’ and Interrupt Service Routines

• Caching of data

• Loss of transient status data in failover or ‘recovery’

Safety vs SecurityThe Givens General Analysis Targeted Analysis Coordination Conclusion

12

General Static Code Analysis

Safety

Vulnerabilities

Security

Vulnerabilities

Static Code Analysis Tool Coverage

The tools cover many, but not all, vulnerabilities.

There are false positives and false negatives with every tool.

Safety vs SecurityThe Givens General Analysis Targeted Analysis Coordination Conclusion

13

The Opportunity for Software Safety

Many of the programming errors detected by software static analysis
tools used for cybersecurity have potential safety-critical impacts:

– Multi-threaded race conditions

– Mishandling of pointers

– Incorrect casting (data type conversion)

– Buffer overflow

Providing access to general static analysis tools already being used
for cybersecurity could greatly assist those responsible for software
safety design and code analysis.

– Need communication and coordination of effort between those
responsible for security and those responsible for system safety

Safety vs SecurityThe Givens General Analysis Targeted Analysis Coordination Conclusion

14

Static analysis tools are already in use for safety

Food and Drug Administration (FDA):

. . . static analysis examines the code exhaustively for certain kinds
of insidious errors that are hard for human reviewers to detect.

[http://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/GeneralHospitalDevicesandSupplies/I
nfusionPumps/ucm202511.htm#staticAnalysis]

Federal Aviation Administration (FAA):

A combination of both static and dynamic analyses should be
specified by the applicant/developer and applied to the software.

[Certification Authorities Software Team (CAST) Position Paper CAST-9, January 2002]

Motor Industry Software Reliability Association (MISRA):

Compliance with MISRA C/C++ coding standards for safety-critical
software is checked by many static analysis tools.

Safety vs SecurityThe Givens General Analysis Targeted Analysis Coordination Conclusion

15

Some General Static Source Code Analysis Tools

Flagging programming errors

• Grammatech’s CodeSonar

• Coverity’s Code Advisor

• IBM’s AppScan

• Clang Static Analyzer

• CppCheck

• Parasoft’s Static Analysis Engine

• Redlizard’s Goanna

• Checkmarx’s CxSAST

• Fasoo’s Sparrow

Safety vs SecurityThe Givens General Analysis Targeted Analysis Coordination Conclusion

16

Targeted Static Analysis:
Proving specific properties and

assertions

17

Safety vs SecurityThe Givens General Analysis Targeted Analysis Coordination Conclusion

Targeted Static Analysis

Targeted static analysis

– Proving targeted assertions

– Counter examples

– Program slicing

18

Targeted Static Analysis
Abstract Interpretation/Model Checking

Safety

Vulnerabilities

Security

Vulnerabilities

Safety-specific

assertion

“Prove” application-specific assertions hold true

for any possible execution sequence (absence of specific vulnerabilities).

Security-specific

assertion

Joint safety/

security

assertion

Safety vs SecurityThe Givens General Analysis Targeted Analysis Coordination Conclusion

19

Soundness vs. Completeness

“[T]he essence of [abstract] static analysis is to efficiently compute
approximate but sound guarantees: guarantees that are not misleading.
. . . Due to the undecidability of static analysis problems, devising a
procedure that does not produce spurious warnings and does not miss
bugs is not possible.”

[“A Survey of Automated Techniques for Formal Software Verification” D’Silva, et al. IEEE
TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND
SYSTEMS, VOL. 27, NO. 7, JULY 2008]

Soundness means that, if the tool reports a property or assertion is met,
the tool can be trusted.

Undecidability means that the tool might not be able to decide for every
possible property or assertion (it is “incomplete”).

Safety vs SecurityThe Givens General Analysis Targeted Analysis Coordination Conclusion

20

Programming constraints to enable
sound static analysis

Specialized programing or modeling languages

• Esterel/Lustre

• Signal

• Promela (for formal analysis by SPIN)

Language subsets

• Escher C Verifier (verifies programs written in an annotated C
subset)

• KeY (verifies properties of programs written in a Java subset)

• VeriFast (verifies programs written in Java or C subsets)

Safety vs SecurityThe Givens General Analysis Targeted Analysis Coordination Conclusion

21

Safety-Critical Decision Points

Safety vs SecurityThe Givens General Analysis Targeted Analysis Coordination Conclusion

Safety-critical software has command authority over potentially
dangerous system actions.

The software is therefore responsible for making the decision to take
that action.

If the data used to make the decision is corrupted or stale, the
software can make the wrong decision with catastrophic results.

Design and code analysis of the software should be focused on the
integrity of the data used at each Safety-Critical Decision Point in the
software.

22

Programming slicing

Safety vs SecurityThe Givens General Analysis Targeted Analysis Coordination Conclusion

In computer programming, program slicing is the computation of the

set of programs statements, the program slice, that may affect the

values at some point of interest, referred to as a slicing criterion.

Program slicing can be used in debugging to locate source of errors

more easily. Other applications of slicing include software

maintenance, optimization, program analysis, and information flow

control.

[Wikipedia article on “Program Slicing,” March 17, 2015]

23

Some Targeted Static Analysis Tools

Proving targeted assertions (model checking)

• Bell Lab’s SPIN

• Carnegie Mellon’s NuSMV

• Kestrel’s CodeHawk (abstract interpretation)

• MathWork’s Polyspace Code Prover (abstract interpretation)

• Microsoft-Inria TLA+ Proof System (TLAPS)

Program slicing tools

• VALSOFT/Joana

• GrammaTech’s CodeSurfer

Safety vs SecurityThe Givens General Analysis Targeted Analysis Coordination Conclusion

24

Opportunities for software
security/safety collaboration

[A]ll systems should be developed as safe secure systems. . . to allow
for a complementary software skill set in software development (tools
and language dependent). This would require a common development
process rather than a skill change. . . [R]isk and hazard analysis, for
both a security and safety assessment, should be conducted and
therefore requires skills from both arenas . . . Independence of this skill
. . . may be required though to ensure there is no bias towards
contradicting risks.

[“Safety-Critical Versus Security-Critical Software.” Dr. Adele-Louise Carter,
Version 1.0, August 2010, bcs.org.uk]

Safety vs SecurityThe Givens General Analysis Targeted Analysis Coordination Conclusion

25

Questions?

Stuart Whitford
Senior Lead Scientist

Booz Allen Hamilton

1550 Crystal Dr, Suite 1100

Arlington, VA 22202

Tel (540) 903-7035
whitford_stuart@bah.com

Safety vs SecurityThe Givens General Analysis Targeted Analysis Coordination Conclusion

26

Backup Slides

27

Tools to Support Software Safety Analysis

Use tools to help analyze the Safety-Significant Software in the

context of the Architecture, Design, or Code (leverage those in use

by the software developers or obtain):

• Software architecture and design modeling and analysis tools,
such as those supporting Architecture Analysis and Design
Language (AADL), Unified Model Language (UML), or Systems
Modeling Language (SysML)

• Static code analysis tools that support focused design and code
analyses, such as thread race/deadlock detection or program
slicing

• Source code cross reference tools that support searching,
cross-referencing, and navigating (forward and backward)
source code trees

28

Some References

 Joint Software Systems Safety Engineering Workgroup. (2010). Joint
Software System Safety Engineering Handbook (JSSSEH). Indian
Head, MD: Naval Ordnance Safety and Security Activity.

 Anton, J. et al (2005). “Towards the Industrial Scale Development of
Custom Static Analyzers.”

 NSA Center for Assured Software (2011). “On Analyzing Static Analysis
Tools.”

 NIST Special Publication 800-176 (2014). Computer Security Division
Annual Report 2014.

 Garavel, H., ed. (2013). Formal Methods for Safe and Secure Computer
Systems. BSI Study 875.

 Carter, A. (2010). Safety-Critical Versus Security-Critical Software.

 Moy, Y. (2014). “Static Analysis Tools Pass the Quals.” CrossTalk.
November/December, 2014.

