
Software Complexity Model

Thuc Tran

School of Engineering and Applied Science

The George Washington University

ttran21@gwu.edu

Software Complexity Model

NDIA Systems Engineering Conference 2017

What is Complexity?

“not easy to understand or explain : not simple ”

“having parts that go together in complicated ways”

“having many varied interrelated parts, patterns, or elements and consequently hard to understand”

What is Software Complexity?

Software that is “not easy to understand or explain : not simple ”

Software “having parts that go together in complicated ways”

Software “having many varied interrelated parts, patterns, or elements and consequently hard to

understand”

Software Complexity makes software difficult to understand and support

1Source: https://www.merriam-webster.com/dictionary/complex

Software Complexity Model

Problem Statement

The lack of a comprehensive software complexity measurement framework leads to an increase of

over 90% in software maintenance cost.

Research Objective

The research aims to measure the complexity of software applications through a comprehensive

analysis using different dimensions of characteristics. The result will be a score which

comprehensively represents the dimensions of software complexity.

2

Software Complexity Model

Source: Software Maintenance Costs (Koskinen, 2015)

Impacts of Software Complexity

3Source: Software Maintenance Costs (Koskinen, 2015)

How to save on software maintenance costs (Vries & Burki, 2014)

• More than 90% of overall software lifecycle

cost can be devoted to maintenance

Software Complexity Model

Impacts of Software Complexity

• Analysis of software accounts for nearly 50% of maintenance development

4Source: Software Development Practices, Software Complexity, and Software Maintenance (Banker et al, 1998)

How to save on software maintenance costs (Vries & Burki, 2014)

Software

Complexity

Maintenance

Effort (50%)

Lifecycle Cost

(90%)

Software Complexity Model

Software Product Quality Model – ISO/IEC 9126 (2001)

• Functionality – The capability of the software product to provide functions which meet stated and implied needs when

the software is used under specified conditions.

• Reliability – The capability of the software product to maintain a specified level of performance when used under

specified conditions.

• Usability – The capability of the software product to be understood, learned, used and attractive to the user, when

used under specified conditions.

• Efficiency – The capability of the software product to provide appropriate performance, relative to the amount of

resources used, under stated conditions.

• Maintainability – The capability of the software product to be modified. Modifications may include corrections,

improvements or adaptation of the software to changes in environment, and in requirements and functional

specifications.

• Portability – The capability of the software product to be transferred from one environment to another.

5

Software Complexity Model

Source: ISO/IEC 9126

Software Product Quality Model – ISO/IEC 9126 (2001)

6NDIA 2017

Software Complexity Model

Dimension Sub-Dimension Definition

Functionality Suitability • The capability of the software product to provide an appropriate set of functions for specified tasks and user objectives.

Accuracy • The capability of the software product to provide the right or agreed results or effects with the needed degree of precision.

Interoperability • The capability of the software product to interact with one or more specified systems.

Security • The capability of the software product to protect information and data so that unauthorised persons or systems cannot read

or modify them and authorised persons or systems are not denied access to them.

Functionality Compliance • The capability of the software product to adhere to standards, conventions or regulations in laws and similar prescriptions

relating to functionality.

Reliability Maturity • The capability of the software product to avoid failure as a result of faults in the software.

Fault Tolerance • The capability of the software product to maintain a specified level of performance in cases of software faults or of

infringement of its specified interface.

Recoverability • The capability of the software product to re-establish a specified level of performance and recover the data directly affected

in the case of a failure.

Reliability Compliance • The capability of the software product to adhere to standards, conventions or regulations relating to reliability.

Usability Understandability • The capability of the software product to enable the user to understand whether the software is suitable, and how it can be

used for particular tasks and conditions of use.

Learnability • The capability of the software product to enable the user to learn its application.

Operability • The capability of the software product to enable the user to operate and control it.

Attractiveness • The capability of the software product to be attractive to the user.

Usability Compliance • The capability of the software product to adhere to standards, conventions, style guides or regulations relating to usability.

Software Product Quality Model – ISO/IEC 9126 (2001)

Software Complexity Model

Dimension Sub-Dimension Definition

Efficiency Time Behavior • The capability of the software product to provide appropriate response and processing times and throughput rates

when performing its function, under stated conditions.

Resource Utilization • The capability of the software product to use appropriate amounts and types of resources when the software performs

its function under stated conditions.

Efficiency Compliance • The capability of the software product to adhere to standards or conventions relating to efficiency.

Maintainability Analyzability • The capability of the software product to be diagnosed for deficiencies or causes of failures in the software, or for the

parts to be modified to be identified.

Changeability • The capability of the software product to enable a specified modification to be implemented.

Stability • The capability of the software product to avoid unexpected effects from modifications of the software.

Testability • The capability of the software product to enable modified software to be validated.

Maintainability Compliance • The capability of the software product to adhere to standards or conventions relating to maintainability.

Portability Adaptability • The capability of the software product to be adapted for different specified environments without applying actions or

means other than those provided for this purpose for the software considered.

Installability • The capability of the software product to be installed in a specified environment.

Co-Existence • The capability of the software product to co-exist with other independent software in a common environment sharing

common resources.

Replaceability • The capability of the software product to be used in place of another specified software product for the same purpose in

the same environment.

Portability Compliance • The capability of the software product to adhere to standards or conventions relating to portability.

Software Product Quality Model – ISO/IEC 9126 (2001)

• Compliance is a part of every dimension and can be considered a dimension on its own

• Note: The following displays all attributes from the ISO/IEC 9126 Product Quality Model, but not

all dimensions / sub-dimensions will be used:

8NDIA 2017

Software Complexity Model

Dimensions Sub-Dimensions

Functionality
• Suitability

• Accuracy

• Interoperability

• Security

• Functionality Compliance

Reliability
• Maturity

• Fault Tolerance

• Recoverability

• Reliability Compliance

Usability
• Understandability

• Learnability

• Operability

• Attractiveness

• Usability Compliance

Efficiency
• Time Behavior

• Resource Utilization

• Efficiency Compliance

Maintainability
• Analyzability

• Changeability

• Stability

• Testability

• Maintainability Compliance

Portability
• Adaptability

• Installability

• Co-Existence

• Replaceability

• Portability Compliance

Dimensions Sub-Dimensions

Functionality
• Suitability

• Accuracy

• Interoperability

• Security

Reliability
• Maturity

• Fault Tolerance

• Recoverability

Usability
• Understandability

• Learnability

• Operability

• Attractiveness

Efficiency
• Time Behavior

• Resource Utilization

Maintainability
• Analyzability

• Changeability

• Stability

• Testability

Portability
• Adaptability

• Installability

• Co-Existence

• Replaceability

Compliance
• Functionality Compliance

• Reliability Compliance

• Usability Compliance

• Efficiency Compliance

• Maintainability Compliance

• Portability Compliance

Software Product Quality Model – ISO/IEC 9126 (2001)

• Dimensions are comprised

of Sub-Dimensions

• Sub-Dimensions are comprised of

various measurements

• Measurements may use

many different metrics

9

Software Complexity Model

Analyzability

Changeability

Stability

Maintainability

Testability

Unique

Operators

Unique

Operands

Total

Operands

Cyclomatic Complexity

(McCabe)

Difficulty (Halstead) Analyzability

NDIA 2017

Dimension

Sub-Dimensions

Metrics
Measurements Sub-Dimension

Software Metrics

• Software Metrics identify a value that represents a characteristic of the software

• Software Metrics contribute to the evaluation of Software Measurements

10

Software Complexity Model

Source: ARISA Compendium of Software Quality Standards and Metrics - Version 1.0

Metric Category Metric Type Metric

Complexity Size • Lines of Code

Interface Complexity • Number of Attributes and Methods

• Number of Local Methods

Structural Complexity • McCabe Cyclomatic Complexity

• Weighted Method Count

• Response for a Class

Software Metrics

11

Software Complexity Model

Source: ARISA Compendium of Software Quality Standards and Metrics - Version 1.0

Metric Category Metric Type Metric

Architecture and Structure Inheritance • Depth of Inheritance Tree

• Number of Children

Coupling • Afferent Coupling

• Coupling Between Objects

• Change Dependency Between Classes

• Change Dependency of Classes

• Efferent Coupling

• Coupling Factor

• Data Abstraction Coupling

• Instability

• Locality of Data

• Message Passing Coupling

• Package Data Abstraction Coupling

Cohesion • Lack of Cohesion in Methods

• Improvement of LCOM

• Tight Class Cohesion

Software Metrics

12

Software Complexity Model

Source: ARISA Compendium of Software Quality Standards and Metrics - Version 1.0

Metric Category Metric Type Metric

Design Guidelines and Code

Conventions

Documentation • Lack of Documentation

Code Conventions

Cylcomatic Complexity

Example Complexity:

13Source: https://www.tutorialspoint.com/software_testing_dictionary/cyclomatic_complexity.htm

v(G) = e – n + p

v(G) = cyclomatic number

e = edges

n = nodes

p = connected components

v(G) = 8 – 7 + 2 = 3

e = 8

n = 7

p = 2

Software Complexity Model

Software Science Metrics

14Source: http://www.win.tue.nl/~aserebre/2IS55/2011-2012/10.pdf

Operators

< 3 { 3

= 5 } 3

> 1 + 1

- 1 ++ 2

, 2 for 2

; 9 if 2

(4 int 1

) 4 return 1

[] 6

Operands

0 1

1 2

2 1

a 6

i 8

j 7

n 3

t 3

Software Complexity Model

Software Science Metrics

15

n1 = unique operators

n2 = unique operands

N1 = total operators

N2 = total operands

Program Length (N) = N1 + N2

Vocabulary Size (n) = n1 + n2

Volume (V) = N * log2(n)

Difficulty (D) = (n1 / 2) * (N2 / n2)

Level (L) = 1 / D

Effort = D * VOL

Time (T) = E / 18

Bugs (B) = V / 3000

Total Unique

Operators N1 = 50 n1 = 17

Operands N2 = 30 n2 = 7

Source: http://www.win.tue.nl/~aserebre/2IS55/2011-2012/10.pdf

n1 = 17

n2 = 7

N1 = 50

N2 = 30

Software Complexity Model

Comprehensive Complexity Measurement

• Software Metrics identify a value that represents a characteristic of the software

• Metrics are used to calculate Software Measurements

• Software Measurements are used to evaluate Sub-Dimensions

• Sub-Dimensions are then used to evaluate Dimensions

• Dimensions can then be used to calculate a Comprehensive Complexity Measurement

16NDIA 2017

Software Complexity Model

Comprehensive Complexity Measurement

17

Software Complexity Model

Metrics

Metrics

Metrics

Measurements

Measurements

Measurements

Sub-Dimension

Sub-Dimension

Sub-Dimension

Dimension

Dimension

Dimension

Comprehensive

Complexity

Measurement

NDIA 2017

Implementation

• Now we have a current score and a desired score, so what?

• The framework can then recommend changes that most significantly reduce the delta score; bringing the current

system closer to the most optimal system

• This can eventually be operationalized with a system like GitHub, a version control system that tracks

changes over time

18

Software Complexity Model

NDIA 2017

19

Questions

• Scalet et al., 2000: ISO/IEC 9126

• Carlson, A. (n.d.). University of Washington. Retrieved 6 21, 2017, from Paul G. Allen School of Computer Science and Engineering:

http://courses.cs.washington.edu/courses/cse403/96sp/coupling-cohesion.html

• Chidamber, S. R., & Kemerer, C. F. (1994, June). A Metrics Suite for Object Oriented Design. IEEE Transactions on Software Engineering, 20(6), 476-493.

• Cyclomatic Complexity. (n.d.). Retrieved 6 21, 2017, from tutorialspoint: https://www.tutorialspoint.com/software_testing_dictionary/cyclomatic_complexity.htm

• Halstead, M. (1977). Elements of Software Science. New York, NY: Elsevier.

• Holzmann, G. (2007, December). Conquering Complexity. 111-113.

• https://www.merriam-webster.com. (2017, 6 21). Retrieved from Merriam-Webster: https://www.merriam-webster.com/dictionary/complex

• Kafura, D., & Henry, S. (1981, September). Software Structure Metrics Based on Information Flow. IEEE Transactions on Software Engineering, SE-7(5), 510-518.

• McCabe, T. J. (1976, December). A Complexity Measure. IEEE Transactions on Software Engineering, SE-2(4), 308-320.

• Measurement of Halstead Metrics with Testwell CMT++ and CMTJava (Complexity Measures Tool). (n.d.). Retrieved 6 21, 2017, from verifysoft:

http://www.verifysoft.com/en_halstead_metrics.html

• Misra, S., Akman, I., & Colomo-Palacios, R. (2011). Framework for evaluation and validation of software complexity measures.

• Ortu, M., Destefanis, G., Murgia, A., Marchesi, M., Tonelli, R., & Adams, B. (n.d.). The JIRA Repository Dataset: Understanding Aspects of Software Development.

• Serebrenik, A. (2017, 6 21). Software Metrics. Software Evolution.

• Shao, J., & Wang, Y. (2003). A new measure of software complexity based on cognitive weights. CCECE 2003 - Canadian Conference on Electrical and Computer Engineering.

• Stevens, W., Myers, G., & Constantine, L. (1974, June). Structured Design. IBM Systems Journal, 13(2), 115-139.

• The Halstead Metrics. (n.d.). Retrieved 6 21, 2017, from Virtual Machinery: http://www.virtualmachinery.com/sidebar2.htm

• Weyuker, E. (1988, September). Evaluating Software Complexity Measures. IEEE Transactions on Software Engineering, 14(9), 1357-1365.

20NDIA 2017

References

• Debbarma, M. K., Debbarma, S., Debbarma, N., Chakma, K., & Jamatia, A. (2013). A Review and Analysis of Software Complexity Metrics in Structural Testing. International

Journal of Computer and Communication Engineering, 2(2), 129–133. https://doi.org/10.7763/IJCCE.2013.V2.154

• Dehaghani, S., & Hajrahimi, N. (2013). Which factors affect software projects maintenance cost more. Acta Informatica Medica, 21(October 2012), 63–66.

https://doi.org/10.5455/aim.2012.21.63-66

• Gui, & Scott, P. D. (2008). New coupling and cohesion metrics for evaluation of software component reusability. Proceedings of the 9th International Conference for Young

Computer Scientists, ICYCS 2008, 1181–1186. https://doi.org/10.1109/ICYCS.2008.270

• Holvitie, J., & Leppänen, V. (2014). Illustrating software modifiability - Capturing cohesion and coupling in a force-optimized graph. Proceedings - 2014 IEEE International

Conference on Computer and Information Technology, CIT 2014, 226–233. https://doi.org/10.1109/CIT.2014.112

• Husein, S., & Oxley, A. (2009). A coupling and cohesion metrics suite for object-oriented software. ICCTD 2009 - 2009 International Conference on Computer Technology and

Development, 1, 421–425. https://doi.org/10.1109/ICCTD.2009.209

• Kafura, D., & Reddy, G. R. (1987). The Use of Software Complexity Metrics in Software Maintenance. IEEE Transactions on Software Engineering, SE-13(3), 335–343.

https://doi.org/10.1109/TSE.1987.233164

• Klemola, T., & Rilling, J. (2003). A Cognitive Complexity Metric Based on Category Learning. In The Second IEEE International Conference on Cognitive Informatics, 2003.

Proceedings. (pp. 106–112).

• Kushwaha, D. S., & Misra, A. K. (2006). Improved cognitive information complexity measure: a metric that establishes program comprehension effort. ACM SIGSOFT Software

Engineering Notes, 31(5), 1–7. https://doi.org/10.1145/1163514.1163533

• Allen, E. B., Khoshgoftaar, T. M., & Chen, Y. (2001). Measuring coupling and cohesion of software modules: an information-theory approach. Proceedings Seventh International

Software Metrics Symposium, (561), 124–134.

• Keshavarz, G., Modiri, N., & Pedram, M. (2011). A Model for the Controlled Development of Software Complexity Impacts. International Journal of Computer Science and

Information Security, 9(6).

• Mancoridis, S., Mitchell, B. S., & Rorres, C. (1998). Using Automatic Clustering to Produce High-Level System Organizations of Source Code. Program Comprehension, 1998.

IWPC ’98. Proceedings., 6th International Workshop.

• Mitchell, B. S., & Mancoridis, S. (2006). On the automatic modularization of software systems using the Bunchtool. IEEE Transactions on Software Engineering, 32(3), 193–208.

• Yau, S. S., & Collofello, J. S. (1980). Some Stability Measures for Software Maintenance. IEEE Transactions on Software Engineering, SE-6(6), 545–552.

21

References

https://doi.org/10.1145/1163514.1163533

