

Engineering Autonomy

Mr. Robert Gold Director, Engineering Enterprise Office of the Deputy Assistant Secretary of Defense for Systems Engineering

20th Annual NDIA Systems Engineering Conference Springfield, VA | October 25, 2017

20th NDIA SE Conference Oct 25, 2017 | Page-1

- Defense Research & Engineering (R&E) Strategy
- Key Research and Development Areas
- Background
- Engineering Challenges
- Summary

Defense Research & Engineering Strategy

Mitigate current and anticipated threat capabilities

Enable new or extended capabilities affordably in existing military systems

Create technology surprise through science and engineering

Focus on Technical Excellence Deliver Technologically Superior Capabilities Grow and Sustain our S&T and Engineering Capability

SAE 2017 9/26/2017| Page-3

Key Research & Development Investment Areas

- Autonomy & Robotics
- Electronic Warfare / Cyber
- Microelectronics
- Hypersonics
- Directed Energy
- Manufacturing

- Artificial Intelligence / Man-Machine Interface
- Future of Computing
- Novel Engineered Materials
- Precision Sensing: Time, Space, Gravity, Electromagnetism
- Emerging Biosciences
- Understanding Human and Social Behavior

- DoD emphasis on the increased use of autonomous systems
- DASD(SE), in collaboration with Services, assessed current autonomy efforts and associated engineering challenges
- The purpose was to ascertain the ramifications of autonomous systems on DoD engineering practice

Increase Level of Experimentation

- Understand autonomy trade-space for architecture/conceptual designs
- Engage Warfighter in experimentation to set expectations
- Engage Industry Partners to conduct mission-specific experiments

Standardize Taxonomy

- Develop autonomy-consistent terms, definitions, and phraseology (e.g., authorized/control entities, flexible/supervised autonomy, human on/outside the loop)
- Refine Requirements Development
 - Apply tools to translate natural language into logical and mathematical statements usable for logic definitions
 - Advance methods to encode interactions between operators and the system for requirements traceability

- Understand/Manage Human-Machine Interaction
 - Allocation of functions between human and machine
 - Explore techniques for ensuring operators trust autonomous systems
- Facilitate Trust and Social Interactions
 - Develop software assurance tools to enhance 'trust'
 - Define techniques for monitoring and bounding autonomous system behaviors
 - Understand social dynamics of autonomous systems to effectively communicate and collaborate with humans

Enhance Analysis, Evaluation, and Certification

- Explore use of formal methods to analyze autonomous systems
- Enable rapid evolution of autonomous capabilities thru:
 - Rapid deployment of software upgrades
 - $_{\odot}\,$ Perform system certifications concurrently with design
 - $_{\odot}\,$ Use of modular open systems architecture

Synchronize Technology Development with Life Cycle Planning

 Rapid autonomous system development and technology transition will mandate effective coordination between engineering and product support activities.

- Understand Consequences of Self-Learning Systems
 - Evaluate consequences of autonomous system behavior being dictated by hardware, software, and system data.
 - $\,\circ\,$ Artificial intelligence will allow new levels of autonomy

Understand Impact to the Work Force

- Develop the Body of Knowledge for autonomous systems to support competency development
- Mission-specific work force education and experience
- Establish Science, Technology, Engineering, and Mathematics relationships with academic institutions

Summary

- Fielding Autonomy-Enabled Warfighting Capability will require close collaboration with:
 - Research, Engineering, and Test & Evaluation
 - Acquisition and Operational Communities
 - Our Industry Partners
- Collaboration needs to occur through planned demonstrations and prototyping, especially at Engineering Commands where these systems are currently designed.
- Autonomy technologies will impact the collective workforce, inclusive of the challenges unique to the engineering community.

Systems Engineering: Critical to Defense Acquisition

Defense Innovation Marketplace http://www.defenseinnovationmarketplace.mil

DASD, Systems Engineering http://www.acq.osd.mil/se

20th NDIA SE Conference Oct 25, 2017 | Page-11

Mr. Robert Gold ODASD, Systems Engineering 703-695-3155 robert.a.gold4.civ@mail.mil

20th NDIA SE Conference Oct 25, 2017 | Page-12