NDIA 2017 Tactical Wheeled Vehicle Conference

Alberto Lacaze, President lacaze@roboticresearch.com Robotic Research LLC

RR: Providing Autonomous Mobility to the DoD

RDECON

Leader/Follower with Supervisory Operator Follower Vehicles (Reduced Crew)

Available Today

Autonomous Mobility Applique System (AMAS) JCTD

L/F Convoy Size	3 - 7 Follower Vehicles	
Roads Traveled	Primary and Secondary Roads	
Command and Control	Ability to designate vehicles as either leaders or followers	
Following Divergence	50 centimeters	
Gap Range	20 meters to 100 meters	
Obstacle Detect/Avoidance	Avoid static and dynamic obstacles in front of vehicles	
Software Library	Government Purpose Rights	

Common Attributes

Leg .er/Follower with Unmanned Followers (No Crew Required)

Automated Ground Resupply (AGR) STO Spiral 1

Different Attributes			
Reduce Crew Size from 2 to 1 Comparable to commercial systems (Otto (Budweiser) or Freightliner) which still require operator fail-safe	Operator Design	Reduce Crew Size from 1 to 0 Exceeds current commercial system manning requirements	
Optionally Driven Vehicle Requires soldier in the vehicle but provides "auto pilot" capability	Vehicle Category	Optionally Manned Vehicle Platform can be driven by a soldier or operated completely unmanned	
Fail Safe / IOP V2 Requires operator for emergency situations	Architecture Design	Fault Tolerant / IOP V3 Redundant systems for emergency situations	

Most L/F performance attributes common between platforms except the fault tolerance of the architecture enabling unmanned operation... AGR delivers this Sep 2017 with an open software architecture

Autonomous Ground Resupply (AGR) – Sustainment Operations (SO)

- While the AGR program as a whole is focused on automation of the full logistics chain, Sustainment Operations (SO) is specifically focused on the support of convoy operations for the Brigade level and above
- SO goals
 - Develop and demonstrate a system that meets the needs of the Leader/Follower and Automated Convoy Operations (ACO) Programs of Record
 - Develop a fault-tolerant, modular, and open architecture

Tier 1 Architecture Promotes Interoperability

CMI: Commander Machine Interface. Hardware and Software that the Commander interacts with to setup and monitor the vehicles RNI: Radio Network Interface Autonomy Kit: Hardware and Software that implements higher level driving and planning functions, such as Leader/Follower, Teleoperation, and Waypoint missions. By-Wire Active Safety Kit: Hardware and Software that controls the physical actuation of the vehicles. Additional active safety features (e.g., Collision Mitigation Braking) are also included in this kit. IOP: Interoperability Profiles

ROBOTIC

Utilizing standard IOP interfaces between the kits ensures a modular system. For example, the same Autonomy Kit could be installed on multiple vehicle types, as long as the By-Wire Kit on each vehicle adhered to IOP.

Challenges and Solutions for LF

Challenges

- Sensing at high speed (negative obstacles in particular)
- Sideways separation distances in GPS denied areas
- IOP v2 incomplete
- Cost
- Smooth transition to ACO
- Safety approval without anybody onboard

- Throwing the kitchen sink: accurate INS, LADAR registration, visual registration, radar, ranging radio, etc
- IOP v3 being improved

We have a manned leader

- Lower costs in numbers
- Developing for LF with ACO in mind
- RR got safety approvals in the past to deploy without anybody onboard (not POR). This is still going to be the biggest challenge.

Solutions