
Exploring Novel Approaches
to the TACE Watchdog

March 2017

Presented by: Bill D’Amico
Authors: Corey Lowman & Bill Van Besien

Contents

 TACE Background and Motivation

 Watchdog Concept and Design

 Overview of Spaceflight-Heritage Watchdog Model

 Overview of Novel ModelGraph-Based Approach to Watchdog

 Example Videos of Watchdog in Simulation

 Approaches to Formal Verification

Presenter
Presentation Notes
This talk will cover the background and motivation of the TACE software system, the Watchdog and its design and execution, and finally how autonomy/safety models used by the Watchdog can be formally verified.

TACE – Overview and Motivation

 TACE – The Safe Testing of Autonomy in Complex, Interactive

Environments.

 Capabilities demonstrations at Aberdeen Proving Ground

(2014/2015) and Atlantic Test Range (2016).

 Contains full live, virtual, constructive (LVC) infrastructure, integration

with range radars.

 The Watchdog as the key component of TACE safety infrastructure.

 Resides on the UAV, supplements onboard avionics.

 Alerts pilots, safety officers to unsafe operating conditions.

 Overrides onboard mission autonomy when safety boundaries violated.

 Remediates aircraft from unsafe states by controlling autopilot directly.

Presenter
Presentation Notes
TACE (Testing of Autonomous systems in Complex operating Enviroments) is a software system developed by JHUAPL to safely test UAV autonomy algorithms in complex operating environments. A main component of TACE is a module known as the Watchdog, which inhibits the on-board autonomy’s control of the aircraft and brings it safely back to base when safety constraints are violated.

E.g. What happens if an autonomy violates a predefined safety constraint? (leaving boundaries, speed/altitude violation, proximity violation)

System that sits on top of autonomy and takes over control when a safety constraint is violated.

System Context – Watchdog as a Multiplexer

 The Watchdog overrides onboard mission autonomy when safety
constraints are violated.
 The Watchdog becomes the gatekeeper to the autopilot until the vehicle

is safe and test directors resume the test.
 Watchdog is shown in TACE onboard architecture (Simplified).

TACE
Flight-Software

Middleware

Directives to
Autopilot

TACE
Watchdog Mission Autonomy

“Autonomy Under Test”

TACE Remediation Path
Plan.

TACE Remediation
Collision Avoid.

TACE Other remediation
algorithm

Telemetry

Control Algorithms

Presenter
Presentation Notes
The Watchdog determines who gets to control the autopilot – when the mission autonomy gets the vehicle into an unsafe state – it cuts it off from contolling the autopilot and lets one of the remediation algorithms take charge.	

Initial Approach – Watchdog core as a VFSM
 TACE Watchdog base lined APL-Developed technology used for NASA Solar Probe

autonomy.
 Developed 2006-12 in the Space Exploration Sector at JHUAPL.
 Designed to manage and minimize complexity for spacecraft fault management/recovery.
 Allows granular, nuanced responses to faults rather than clunky, pre-programmed sequences.

 Uses a Virtual Finite State Machine (VFSM) as the underlying formal computational structure.
 Generalization of a classical Finite State Machine, suitable for asynchronous events and input.
 Reduction to well-defined computational structure amenable to formal verification methods.

 Safety/Autonomy models are represented as VFSMs.
 Models encode instrument/component states (e.g., nominal, overheating, unpowered, etc.),

transitions among states, and actions to be taken to bring the UAV into “safe mode” in a fault event.
 Software provides drag-and-drop utility to create models.

 Watchdog software operates as an interpreter of VFSM models (three phases).
 Sense any changes in onboard telemetry, evaluate the given safety model (perform state transitions,

if necessary), act on any commands as defined by the transition between states.

Presenter
Presentation Notes
Additional Notes:

In Spaceflight fault management/autonomy, we have to expect a very long latency, sometimes several minutes to hours. Long period before mission operators can make determinations about what actions to perform.

Furthermore, a key motivation for using the VFSM model is that mission operations team can get further insight into the nature of a fault, how it arrived at that faulted state, and how it gets back to a “safe mode”.

Motivation: Limitations to the VFSM Model

 In traditional FSMs/VFSMs states are “context free”.

 Current state defined exclusively by prior state and recent inputs.

 States themselves do not contain explicit invariants.

 Can increase design complexity and testing burden, exposes more possibilities for

discrepancy between state of FSM and actual state of the System-Under-Test.

 Original Space Department VFSM not intended to handle concurrent faults.

 Space CONOPS different from that of testing DoD Autonomous Systems.

 Space applications calls for intricate, nuanced responses to at most on fault at a time.

 TACE requires juggling multiple faults concurrently.

 Motivating Question: Can we extend or generalize the VFSM model to…

 … Minimize design complexity?

 … Simplify testing and validation of TACE remediation models?

 … Better handle concurrent safety violations?

Presenter
Presentation Notes
- Note that when I say “invariant” I mean an explicit boolean expression that must be evaluated. In a traditional FSM/VFSM, states don’t have these, so there can be a “drift” or discrepency between the actual state of the SUT and the state the safety system reports.

Experimental Approach – The ModelGraph

 Propose novel data structure based on VFSMs for remediation models, the ModelGraph.

 FSM-like graph-based data structure.

 Transitions encode actions trigger a change in state.

 Supplemented states with explicit invariant expression (are only considered active if-and-only-if

Boolean expression evaluates to true).

 Multiple states can be ‘active’ at one time. If no state is active an integrity error is thrown.

 Algorithm Overview: Three-Phase Evaluation Loop

 Sensing Phase: Sense the current state. Performs triage when multiple unsafe states are active

based on evaluation of various supplementary metrics.

 Targeting Phase: Identify path toward safest reachable state in the model graph (sometimes

picking a locally safe states when the globally safest state is not reachable). This is called the goal

state.

 Commanding Phase: Issue commands pertaining to the transition to the next state in the path

toward the goal state.

 Lifecycle of remediation defined by path through state-space.

 As new violations occur while remediating the path may change.

Presenter
Presentation Notes
Our novel data structure the ModelGraph is intended to address the three questions posed in the following slide.

By using explicit invariants for each state, and allowing multiple states to be active at once, our models can be much more flexible and handle more complex faults with less complicated models.

The “evaluation loop” is evaluated at a fixed frequency – for now we say once per second, though this can change depending on scale and scope.

Experimental Approach – Summary

 If the Watchdog determines there is a discrepancy between the

current state and the desired safest state, it finds a path between

them and attempts to move along the path by executing the

corresponding actions

 If a higher priority state becomes active, the path through the state

space may change

 The priority – or “urgency” – is dynamic so it changes based on the state

of the system, which allows the highest priority state to change even if

the active states don’t change.

 Allows more urgent and/or transient risks to be addressed while already

remediating from other safety faults.

onboard_aut on
path_planner off &&
obstacle_avoid off &&

Simple ModelGraph Example

Boundary
Violation

Proximity
Violation

Geo-
Remedi-

ated

Prox-
Remedi-

ated

Loitering Testing

dis-onboard_aut
en-path_planner

dis- disable
en- enable

dis-onboard_aut
en-obstacle_avoid

onboard_aut off
path_planner off &&
obstacle_avoid off &&

en-onboard_aut

(xown – xint)2 +
(yown – yint)2 > thres2 &&
onboard_aut off &&
path_planner off &&
obstacle_avoid on

 |xown| ≥ xbox
|| |yown| ≥ ybox

(xown – xint)2 +
(yown – yint)2 ≤ thres2

|xown| < xbox &&
|yown| < ybox &&
onboard_aut off &&
path_planner on &&
obstacle_avoid off

Simple remediation model accounting
for two potential violations.

• Violation of test range boundary
• Proximity violation to another aircraft

State’s boolean
expression.

Command
encoded by
transition.

Current state
(indicated in light
blue)

Presenter
Presentation Notes
The colored text next to the states are the state’s active expression
The text next to the transitions are the actions that the state takes once it becomes active

Note: the priority of each of these states is not shown, but could be an expression similar to the active expression

In this example, we have 2 safety constraint violations – a boundary violation (going outside of the boundary), and a proximity violation (getting too close to another entity)

There are three algorithms that the Watchdog handles, the onboard autonomy, obstacle avoidance, and the path planner.

onboard_aut on
path_planner off &&
obstacle_avoid off &&

Example Faulted Scenario (Boundary Violation)

Boundary
Violation

Proximity
Violation

Geo-
Remedi-

ated

Prox-
Remedi-

ated

Loitering Testing

dis-onboard_aut
en-path_planner

dis- disable
en- enable

dis-onboard_aut
en-obstacle_avoid

onboard_aut off
path_planner off &&
obstacle_avoid off &&

en-onboard_aut

(xown – xint)2 +
(yown – yint)2 > thres2 &&
onboard_aut off &&
path_planner off &&
obstacle_avoid on

 |xown| ≥ xbox
|| |yown| ≥ ybox

(xown – xint)2 +
(yown – yint)2 ≤ thres2

|xown| < xbox &&
|yown| < ybox &&
onboard_aut off &&
path_planner on &&
obstacle_avoid off Red indicates path through state

space from faulted state to target safe
state.

Presenter
Presentation Notes
Consider the entity goes outside of the boundary, then the boundary violation state becomes active.

onboard_aut on
path_planner off &&
obstacle_avoid off &&

Boundary Violation Example Model

Boundary
Violation

Proximity
Violation

Geo-
Remedi-

ated

Prox-
Remedi-

ated

Loitering Testing

dis-onboard_aut
en-path_planner

dis- disable
en- enable

dis-onboard_aut
en-obstacle_avoid

onboard_aut off
path_planner off &&
obstacle_avoid off &&

en-onboard_aut

(xown – xint)2 +
(yown – yint)2 > thres2 &&
onboard_aut off &&
path_planner off &&
obstacle_avoid on

 |xown| ≥ xbox
|| |yown| ≥ ybox

(xown – xint)2 +
(yown – yint)2 ≤ thres2

|xown| < xbox &&
|yown| < ybox &&
onboard_aut off &&
path_planner on &&
obstacle_avoid off

Presenter
Presentation Notes
Then we execute the actions in its transition, so we disable the on-board autonomy, and enable the path planner algorithm. Since we disable the onboard_autonomy, the testing state becomes inactive

onboard_aut on
path_planner off &&
obstacle_avoid off &&

Boundary Violation Example Model

Boundary
Violation

Proximity
Violation

Geo-
Remedi-

ated

Prox-
Remedi-

ated

Loitering Testing

dis-onboard_aut
en-path_planner

dis- disable
en- enable

dis-onboard_aut
en-obstacle_avoid

onboard_aut off
path_planner off &&
obstacle_avoid off &&

en-onboard_aut

(xown – xint)2 +
(yown – yint)2 > thres2 &&
onboard_aut off &&
path_planner off &&
obstacle_avoid on

 |xown| ≥ xbox
|| |yown| ≥ ybox

(xown – xint)2 +
(yown – yint)2 ≤ thres2

|xown| < xbox &&
|yown| < ybox &&
onboard_aut off &&
path_planner on &&
obstacle_avoid off

Presenter
Presentation Notes
Now this is the state for a while, while the path planner algorithm runs, until the entity is back inside the boundary, then it enters the geo-remediated state.

Active state is light blue – dark blue is inactive

onboard_aut on
path_planner off &&
obstacle_avoid off &&

Boundary Violation Example Model

Boundary
Violation

Proximity
Violation

Geo-
Remedi-

ated

Prox-
Remedi-

ated

Loitering Testing

dis-onboard_aut
en-path_planner

dis- disable
en- enable

dis-onboard_aut
en-obstacle_avoid

onboard_aut off
path_planner off &&
obstacle_avoid off &&

en-onboard_aut

(xown – xint)2 +
(yown – yint)2 > thres2 &&
onboard_aut off &&
path_planner off &&
obstacle_avoid on

 |xown| ≥ xbox
|| |yown| ≥ ybox

(xown – xint)2 +
(yown – yint)2 ≤ thres2

|xown| < xbox &&
|yown| < ybox &&
onboard_aut off &&
path_planner on &&
obstacle_avoid off

Presenter
Presentation Notes
Again execute the actions, so disable the path planner.

onboard_aut on
path_planner off &&
obstacle_avoid off &&

Boundary Violation Example Model

Boundary
Violation

Proximity
Violation

Geo-
Remedi-

ated

Prox-
Remedi-

ated

Loitering Testing

dis-onboard_aut
en-path_planner

dis- disable
en- enable

dis-onboard_aut
en-obstacle_avoid

onboard_aut off
path_planner off &&
obstacle_avoid off &&

en-onboard_aut

(xown – xint)2 +
(yown – yint)2 > thres2 &&
onboard_aut off &&
path_planner off &&
obstacle_avoid on

 |xown| ≥ xbox
|| |yown| ≥ ybox

(xown – xint)2 +
(yown – yint)2 ≤ thres2

|xown| < xbox &&
|yown| < ybox &&
onboard_aut off &&
path_planner on &&
obstacle_avoid off

Presenter
Presentation Notes
Now this is a special state, where the entity is doing nothing at all, so just staying in the same spot. Since it doesn’t actually do anything, it doesn’t take very long to enter this state.

onboard_aut on
path_planner off &&
obstacle_avoid off &&

Boundary Violation Example Model

Boundary
Violation

Proximity
Violation

Geo-
Remedi-

ated

Prox-
Remedi-

ated

Loitering Testing

dis-onboard_aut
en-path_planner

dis- disable
en- enable

dis-onboard_aut
en-obstacle_avoid

onboard_aut off
path_planner off &&
obstacle_avoid off &&

en-onboard_aut

(xown – xint)2 +
(yown – yint)2 > thres2 &&
onboard_aut off &&
path_planner off &&
obstacle_avoid on

 |xown| ≥ xbox
|| |yown| ≥ ybox

(xown – xint)2 +
(yown – yint)2 ≤ thres2

|xown| < xbox &&
|yown| < ybox &&
onboard_aut off &&
path_planner on &&
obstacle_avoid off

Presenter
Presentation Notes
Now we enable the on-board autonomy, and the testing state becomes active again

onboard_aut on
path_planner off &&
obstacle_avoid off &&

Boundary Violation Example Model

Boundary
Violation

Proximity
Violation

Geo-
Remedi-

ated

Prox-
Remedi-

ated

Loitering Testing

dis-onboard_aut
en-path_planner

dis- disable
en- enable

dis-onboard_aut
en-obstacle_avoid

onboard_aut off
path_planner off &&
obstacle_avoid off &&

en-onboard_aut

(xown – xint)2 +
(yown – yint)2 > thres2 &&
onboard_aut off &&
path_planner off &&
obstacle_avoid on

 |xown| ≥ xbox
|| |yown| ≥ ybox

(xown – xint)2 +
(yown – yint)2 ≤ thres2

|xown| < xbox &&
|yown| < ybox &&
onboard_aut off &&
path_planner on &&
obstacle_avoid off

en-onboard_aut

onboard_aut on
path_planner off &&
obstacle_avoid off &&

Boundary Violation Example Model

Boundary
Violation

Proximity
Violation

Geo-
Remedi-

ated

Prox-
Remedi-

ated

Loitering Testing

dis-onboard_aut
en-path_planner

dis- disable
en- enable

dis-onboard_aut
en-obstacle_avoid

onboard_aut off
path_planner off &&
obstacle_avoid off &&

(xown – xint)2 +
(yown – yint)2 > thres2 &&
onboard_aut off &&
path_planner off &&
obstacle_avoid on

 |xown| ≥ xbox
|| |yown| ≥ ybox

(xown – xint)2 +
(yown – yint)2 ≤ thres2

|xown| < xbox &&
|yown| < ybox &&
onboard_aut off &&
path_planner on &&
obstacle_avoid off

Single Fault Scenario

Presenter
Presentation Notes
One entity flying around - only safety constraint is range violation. When the entity exits the range boundary (red box), it enables the path planner algorithm, which in this video just flys straight towards the center of the range.

Entity is denoted by blue dot, the blue line coming out of it is its current velocity

Once it exits the boundary, you’ll see a dashed line from the entity to the center of the range, and that is the path planner’s target position.

Once it enters the green boundary, it will enter back into the testing state

Multi-Fault Scenario

Presenter
Presentation Notes
This is a more complex example, here the blue entity also has a proximity violation state, and will avoid the red entities.

When it gets close enough to one of the entities, the proximity violation state becomes active, which enables the obstacle avoidance algorithm.

Once blue is far enough away from red, the path planner algorithm is enabled, and blue flies back to the middle.

Note: the red entities also have a watchdog on them, but they only stay within the boundary and don’t fly back to the middle

Stress-Test Adversarial Multi-Fault Scenario

Presenter
Presentation Notes
Here is a pathological example, where the red entity’s onboard-autonomy simply chases the blue entity.

The interesting part is when the start exiting the boundary, you’ll see them bouncing back in and out of the boundary, and eventually the blue sort of gets away.

Formal Verification Approach

 Motivation

 The precise behavior of the Watchdog may be configured and specified for each test or

unique test range conditions.

 Logical errors in model specifications are likely to occur on occasion and could be dangerous.

 During early testing we encountered an unexpected fault in which there was no active state,

resulting in the simulated aircraft being adrift in the air.

 This is something that could have been caught by applying formal methods to the model.

 Approach
 Automatically translate each custom watchdog model to logical verification conditions

corresponding to desired correctness properties.
– E.g., The watchdog always has at least one valid active state.
– E.g., The watchdog can potentially reach any possible goal state from any current state.

 Use a hybrid satisfiability solver to formally prove the verification conditions hold.

Presenter
Presentation Notes
Ryan Gardner – AOS  IRAD proposal and he is linked with Chris Rouff and Aurora Schmidt.

Next Steps

 Determine best-practices for developing remediation ModelGraphs.

 How specific/broad to be defining states and their invariants.

 Defining command dictionaries in a way that makes them easily reversible.

 Identify good design patterns and poor constructs.

 Stress test with more complex remediation models, more agents.

 Regressions with fairly simple remediations.

 Increase scenario complexity – Multiple SUTs, intricate range boundaries, full WFN.

 Make final determination to VFSM vs. ModelGraph as Watchdog core

algorithm.

 Transition code to a more flight-quality implementation.

 Embedded ANSI C implementation for integration to flight hardware.

Acknowledgements

 Support was provided by the Test Resource Management Center

(TRMC) under contract W900KK-13-C-0036 Unmanned & Autonomous

System Test (UAST) Test Technology Area

 Vernon Panei and Kris Melton

 Multiple NAVAIR Test Range Personnel

 JHU/APL Team

 Corey Lowman, Bill Van Besien, Kristi Ramachandran, SW Team

 Dave Scheidt, Principal Investigator

 Bill D’Amico, Project Manager

	Exploring Novel Approaches �to the TACE Watchdog
	Contents
	TACE – Overview and Motivation
	System Context – Watchdog as a Multiplexer
	Initial Approach – Watchdog core as a VFSM
	Motivation: Limitations to the VFSM Model
	Experimental Approach – The ModelGraph
	Experimental Approach – Summary
	Simple ModelGraph Example
	Example Faulted Scenario (Boundary Violation)
	Boundary Violation Example Model
	Boundary Violation Example Model
	Boundary Violation Example Model
	Boundary Violation Example Model
	Boundary Violation Example Model
	Boundary Violation Example Model
	Boundary Violation Example Model
	Single Fault Scenario
	Multi-Fault Scenario
	Stress-Test Adversarial Multi-Fault Scenario
	Formal Verification Approach
	Next Steps
	Acknowledgements
	Slide Number 24

