

SESSION ABSTRACT

2

Continuous testing (CT) is a term being used more and more in the Commercial software
development arena. While some have mastered CT, most of us (including in the
Government software arena) struggle with how to transform our current testing approaches
to CT approaches and align them with evolving development methodologies. This
presentation will review current examples of CT implementations across different software
development methodologies (agile, waterfall, incremental) and describes where CT type
testing yields the best benefits. Arguably the most challenging methodology that demands
CT testing is DevOps. DevOps requires all phases of testing to be done quickly and in
parallel with the development process and some contend that testing continues into actual
operations. Leave this session with a better understanding of CT, and how this approach
can be best leveraged in your software development environment for Government systems
(including Weapons Systems).

AGENDA
• INTRODUCTION
• TEST TYPES DEFINED
• DEVELOPMENT METHODOLOGIES
• CONTINUOUS TESTING (CT) APPROACHES
• “THE TOOLCHAIN”
• SUCCESSES WITH CT
• WRAP-UP
• FINAL COMMENT

3

TEST TYPES DEFINED

Goal: High test coverage for each test type or identify risk for
reduced coverage

Unit Testing (White-Box)
Statement, Condition, Decision & Path
Metric is Logic Coverage – tools available

Integration Testing (Interface Testing: this is generally very weak)
Identify threads through system
Threads part of incremental/build plans
Early look at Technical Performance Measures – TPM’s (stability, performance, RMA, etc)
Metric is Interface coverage – external & internal interface

4

5

TEST TYPES DEFINED (CONT’D)
Functional Testing (Black-Box)

Boundary Value Analysis, Output Forcing, Equivalence Class Partitioning, Cause & Effect Graphing,
Combinatorial, etc.
Metric is Function coverage – SRS requirements, etc

System Testing (Official Sell-Off)
Types - Scenario-Based, Risk-Based, Exploratory, Model-Based, etc
Includes several categories of requirements – HMI, Non-Functional (Performance, RMA, Configuration,
Installation), etc.
Metric is Requirements coverage – System Spec, Ops Concept/Scenarios, etc

Acceptance Testing (Customer Testing)
Operational Test & Evaluation (OT&E), Beta, etc
Metric typically owned by Customer but good to know

DEVELOPMENT METHODOLOGIES

6

Effective and Efficient Test Lifecycle in any Software
Development Methodology (WF, Incremental, etc.)

7

Presenter
Presentation Notes
I have seen WF work well but it is not at all typical especially today, Incremental works much better.
However, the notion of I&T at each level of an architecture is very important and leads to less defects being detected late in the release process or after delivery

Effective and Efficient Test Lifecycle
in any Software Development

Methodology (Agile, DevOps, etc.)

8

Effective and Efficient Test Lifecycle in any Software
Development Methodology (Agile, DevOps, etc.)

See SAFe at www.scaledagileframework.com

ART – Agile Release Trains
ATDD – Acceptance Test Driven Development
WSJF – Weighted Shortest Job First

9

Presenter
Presentation Notes
Teams made up of all disciplines

CONTINUOUS TESTING APPROACHES

10

Defects – Are teams spending too
much time logging, triaging or
analyzing defects? What about
time spent on defects that aren’t
“real” defects—where there is a
misunderstanding between the test
and the code? Or what if they
could prevent entire schools of
defects from ever being created in
the first place?

11

“Continuous Testing: Shift Left and Find the Right Balance”

Test Management – Are teams
spending time manually crafting
status reports and rolling up test
execution results? Or do they have
a tool that provides that
information in real time and allows
stakeholders to drill down as
needed? How do teams know if
they are on schedule with their
test effort, behind schedule or
even ahead of schedule?

12

“Continuous Testing: Shift Left and Find the Right Balance”

Test Automation – How efficient are
teams at re-executing existing tests?
Do they run most or even all of them
manually? If they’ve automated tests,
are they focused only on functional
tests at the user interface layer, or
are they running functional API-layer
tests, performance tests and even
security tests? Do they have a robust
and maintainable test automation
framework?

13

“Continuous Testing: Shift Left and Find the Right Balance”

Analytics – How do teams know which
tests they should run, when and even
why they are running those tests at
those times? How good is their test
effectiveness, are they running the
fewest number of tests that find the
largest number of problems? Impact
analysis is critical in selecting the
right sets of tests to execute
whenever they get a new build.

14

“Continuous Testing: Shift Left and Find the Right Balance”

Test Environments – Are teams
constantly waiting on test
environments to be provisioned and
configured properly? Do they run
tests and discover after the fact that
the test environment wasn’t “right,”
so they have to fix the environment
and then re-run all the tests again?
Do they hear from developers, “It
works on my machine!” but it doesn’t
work in the test environment?

15

“Continuous Testing: Shift Left and Find the Right Balance”

Service Virtualization – Are teams waiting
for dependent systems to become
available before they can “really” test?
Are they using a “big bang” approach to
conduct end-to-end system testing,
where they throw all the components
together and hope they work and interact
properly? Can teams test exception and
error scenarios before going to
production? Are they testing the easiest
parts first just because they are
available, and delaying the high-risk
areas for the end of the testing effort?

16

“Continuous Testing: Shift Left and Find the Right Balance”

Test Data – Do teams have the needed
sets of production-like test data to
ensure they are covering the right test
scenarios? Are there exception and error
scenarios that we can’t execute because
they don’t have the right sets of test
data?

17

“Continuous Testing: Shift Left and Find the Right Balance”

“Continuous
Testing: Shift Left
and Find the Right

Balance”

by Marianne Hollier
on DEVOPS.com

18

“Understanding DevOps – Part 4: Continuous
Testing and Continuous Monitoring”
by Sanjeev Sharma on sdarchitect.wordpress.com

19

SOME OPEN-SOURCE CATEGORIES/TOOLS IN A TOOLCHAIN

20

A VENDORS VIEW OF CD WITH CT

21

Continuous delivery (CD):
a SW engineering approach
in which teams produce
software in short cycles…
oContinuous Delivery is not

Continuous Deployment
oRelies on 3 foundations:

• Configuration management,
• Continuous integration,
• Continuous Testing

MY SET OF TOOL CATEGORIES IN A TOOLCHAIN

22

Project
Management

Requirements
Gathering &

Management
Versioning Configuration

Management

SW
Development &
Testing* Tools

Continuous
Integration

Monitoring

SUCCESS WITH CT IN WATERFALL AND AGILE

23

10 COMPANIES KILLING IT AT DEVOPS FROM TECHBEACON.COM

•1. AMAZON
•2. NETFLIX
•3. TARGET
•4. WALMART
•5. NORDSTROM

 24

•6. FACEBOOK
•7. ETSY
•8. ADOBE
•9. SONY PICTURES ENTERTAINMENT
•10. FIDELITY WORLDWIDE INVESTMENT

25

WRAP-UP
• CT can be used in any development

methodology and provide value

• A robust toolchain is crucial to successful CD
and CT – Should be in Proposal/TMRR phase

• Good testing practices are still important and
maybe more so in CT as in any other
development methodology

• DevOps demands CT to achieve desired
outcomes of faster delivery with high quality

FINAL COMMENT:

THE WARFIGHTER DESERVES
QUICKER DELIVERIES WITH

HIGHER QUALITY!

26

	Continuous Testing:�The New normal
	Session Abstract
	agenDa
	Test Types Defined
	Test types defined (cont’d)
	Development methodologies
	Effective and Efficient Test Lifecycle in any Software Development Methodology (WF, Incremental, etc.)
	Effective and Efficient Test Lifecycle in any Software Development Methodology (Agile, DevOps, etc.)
	Effective and Efficient Test Lifecycle in any Software Development Methodology (Agile, DevOps, etc.)
	Continuous testing approaches
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	“Understanding DevOps – Part 4: Continuous Testing and Continuous Monitoring”�by Sanjeev Sharma on sdarchitect.wordpress.com�
	Some Open-source Categories/tools in a toolchain
	A Vendors view of CD with CT
	My set of tool Categories in a toolchain
	Success with CT in waterfall and agile
	10 companies killing it at DevOps from techbeacon.com�
	Wrap-Up
	Final Comment:��The Warfighter deserves quicker deliveries with higher quality!

