

SESSION ABSTRACT

Continuous testing (CT) is a term being used more and more in the Commercial software
development arena. While some have mastered CT, most of us (including in the
Government software arena) struggle with how to transform our current testing approaches
to CT approaches and align them with evolving development methodologies. This
presentation will review current examples of CT implementations across different software
development methodologies (agile, waterfall, incremental) and describes where CT type
testing yields the best benefits. Arguably the most challenging methodology that demands
CT testing is DevOps. DevOps requires all phases of testing to be done quickly and In
parallel with the development process and some contend that testing continues into actual
operations. Leave this session with a better understanding of CT, and how this approach
can be best leveraged in your software development environment for Government systems -
(including Weapons Systems).

AGENDA

® INTRODUCTION

® TEST TYPES DEFINED

® DEVELOPMENT METHODOLOGIES

® CONTINUOUS TESTING (CT) APPROACHES
® “THE TOOLCHAIN”

® SUCCESSES WITH CT

® WRAP-UP

® FINAL COMMENT

TEST TYPES DEFINED

Goal: High test coverage for each test type or identify risk for
reduced coverage

Unit Testing (White-Box)

Statement, Condition, Decision & Path
Metric is Logic Coverage —tools available

Integration Testing (Interface Testing: this is generally very weak)

|dentify threads through system
Threads part of incremental/build plans £
Early look at Technical Performance Measures — TPM's (stability, performance, RMA, etc)
Metric is Interface coverage —external & internal interface

TEST TYPES DEFINED (CONT'D)

Functional Testing (Black-Box)
Boundary Value Analysis, Output Forcing, Equivalence Class Partitioning, Cause & Effect Graphing,

Combinatorial, etc.
Metric is Function coverage — SRS requirements, etc

System Testing (Official Sell-Off)

Types - Scenario-Based, Risk-Based, Exploratory, Model-Based, etc
Includes several categories of requirements — HMI, Non-Functional (Performance, RMA, Configuration,

Installation), etc.
Metric is Requirements coverage — System Spec, Ops Concept/Scenarios, etc

Acceptance Testing (Customer Testing)

Operational Test & Evaluation (OT&E), Beta, etc
Metric typically owned by Customer but good to know

DEVELOPMENT METHODOLOGIES

-
Cuestomr Requiremints F.
Customar Concapt of Ops Operations Environment = Sysiom & Sof VakdoSion oy <
Customar Vehdetion Plans TEMP Driven + - ProceduresReports \ opnnt
Cost, Schadula, Risks f_. Operational Test & Evaluation L Panning]
; meeting \
System Requirements prepara“aq \ ’ \ ’ Daily
SRR | oversional Scenarios o Update Daily . A,
iR Master I8V Plan Driven Product Cycle ‘ ’ =SCru
Interface Control Doc's B ackiog yCie o
i /
SDR R B SCRUM
Subsysten Roquiseeents. P J PROCESS
Interiace Desagn Documents. ¥
Subsystem Verification Plans . Sprint
Subsystem Integration Flans - ;‘
L] Relrospectve
\‘f‘% r A] TUS
Product Specifications i o d
i Product Verification Plans Product AR
Product Integration Plans " HW & SW ComponestUnit Test Spant
g:?'t':t"s::;z:‘:;m Detailed Design & Assemble/Build Hardware & Software Products Rewew
Finals at CDR
DevOps
SAFe 4.0 for Lean Software and Systems Engineering 4t ShFe
s e). B ieE B & :
. J] S ? e 2
= we! '] e =
E. ome 1 i "
I*;nmﬂ",,bf ?‘
| AR L 2 ! ;
g
g
i

inn

Effective and Efficient Test Lifecycle in any Software
Development Methodology (WF, Incremental, etc.)

Customer Requirements — »
Customer Concept of Ops — Operations Environment System & SoS Validation]
Customer Validation Plans TEMP Driven - Procedures/Reports
BLAE AT Bl o Operational Test & Evaluation
b <

System Requirements
SRR Operational Scenarios
System Verification Plan
Interface Control Doc’s
Integration Threads
System Integration Plan

System Verification Testing

— - Verification Test
Procedure/Report

—+ System Integration

System
Master |1&V Plan Driven

P
\%

- —_—p .“-
R el Req_mrements Subsystem 3 Subsystem Verification
Interface Design Documents & _Verification Test 3
Subsystem Verification Plans ® Procedure/Report '
Subsystem Integration Plans %’ Subsystem Integration
Z ¥, £

\5 / -

— Product Verification
- Verification Proc/Report
—* Product Integration

~ " HW & SW Component/Unit Test

PDR’C DR Product Specifications

Product Verification Plans
Product Integration Plans

Product

Goal I&Y Documents:
Draft at SRR, SDR & PDR Detailed Design & Assemble/Build Hardware & Software Products
Finals at CDR

Presenter
Presentation Notes
I have seen WF work well but it is not at all typical especially today, Incremental works much better.
However, the notion of I&T at each level of an architecture is very important and leads to less defects being detected late in the release process or after delivery

Effective and Efficient Test Lifecycle
In any Software Development
Methodology (Agile, DevOps, etc.)

; Spnint
% Plaming rf
y meeting
Preparation " \ S
Spemese Update \ Dasly Fo o 20
Product . ‘

Cycle J Scrum
Backiog

_ SCRUM
J User Stones PROCESS

aprin

Retrospective
.l//iﬁmw
Rewew

Effective and Efficient Test Lifecycle in any Software
Development Methodology (Agile, DevOps, etc.)

i qhe ai® v
ilﬁlﬂg i ol

SAFe' 4.0 for Lean Software and Systems Engineering

lﬁi Yl E&ﬁﬁ%

Scrum Test
PM/POs I Engineers D

Masters

Developers

ATDD WSJF From Java
to Ruby

.| Steering
the ART

ART —Agile Release Trains

ATDD — Acceptance Test Driven Development
WSJF—Weighted Shortest Job First

See SAFe at www.scaledagileframework.com

Presenter
Presentation Notes
Teams made up of all disciplines

CONTINUQOUS TESTING APPROACHES

Defects

Continuous

Testing
Service
virtualization

Analytics

Dev Environment

Test Environment

Stage Environment

Ui
Tesf

©

Continuous Integration <
Init

Continuous Testing
Funxtional
Test Acceptance
Performance U
Test

Continuous Delivery

Prod Environment

Continuous Monitoring

Checkout
code

Initiate C1
Process

Source Control

- 5 3
; :
D Manual
— c © vaiivation .
Developer il Testing
changes

Tesls

Unit/Integration

Acceptance
Driven Tests

Testing

Release

Validation

le Production

Release

b AT A

“Continuous Testing: Shift Left and Find the Right Balance”

Service
virtualization

Continuous
Testing

Analytics

Defects — Are teams spending too
much time logging, triaging or
analyzing defects? What about
time spent on defects that aren’t
“real” defects—where there is a
misunderstanding between the test
and the code? Or what if they
could prevent entire schools of
defects from ever being created In
the first place?

“Continuous Testing: Shift Left and Find the Right Balance”

Continuous
Testing

&

“Continuous Testing: Shift Left and Find the Right Balance”

Continuous
Testing

.

“Continuous Testing: Shift Left and Find the Right Balance”

Service
virtualization

Continuous

Testing

Analytics

Analytics — How do teams know which
tests they should run, when and even
why they are running those tests at
those times? How good is their test
effectiveness, are they running the
fewest number of tests that find the
largest number of problems? Impact
analysis is critical in selecting the
right sets of tests to execute
whenever they get a new build.

e
A

“Continuous Testing: Shift Left and Find the Right Balance”

Continuous
Testing

) o

Analytics

Test Environments — Are teams
constantly waiting on test
environments to be provisioned and
configured properly? Do they run
tests and discover after the fact that
the test environment wasn't “right,”
so they have to fix the environment
and then re—run all the tests again?
Do they hear from developers, “It
works on my machine!” but it doesn’t
work 1n the test environment?

“Continuous Testing: Shift Left and Find the Right Balance”

n’

Continuous

Testing
Service

virtualization

—

ervice Virtualization — Are teams waiting
for dependent systems to become
available before they can “really” test?
Are they using a “big bang” approach to
conduct end-to—end system testing,
where they throw all the components
together and hope they work and interact
properly? Can teams test exception and
error scenarios before going to
production? Are they testing the easiest
parts first just because they are
available, and delaying the high-risk
areas for the end of the testing effort?

1 7w

=%

“Continuous Testing: Shift Left and Find the Right Balance”

Test Data — Do teams have the needed
sets of production-like test data to
ensure they are covering the right test
: scenarios? Are there exception and error
Continuous . y

Testing scenarios that we cant execute because
they don’t have the right sets of test
data?

.

Analytics

\

Continuous

Testing
Service

virtualization

9 &
M

“Continuous
Testing: Shift Left
and Find the Right
Balance”

by Marianne Hollier
on DEVOPS.com

“Understanding DevOps - Part 4: Continuous
Testing and Continuous Monitoring”
by Sanjeev Sharma on sdarchitect.wordpress.com

Dev Environment Test Environment Stage Environment Prod Environment
Continuous Integration < Continuous Testing >

Funxtional
Tast
Accepance ' Continuous Monitoring
Performance
Taest

Continuous Delivery _
| | | ’

SOME OPEN-SOURCE CATEGORIES/TOOLS IN A TOOLCHAIN

Issue «ZenDesk,
kaim JNRA, V50

p *Puppet,
Configuration JR«TIANS

Management REUEEIEY
DSC

Source «TFS, Git,
Control Cvs

=Team City,

= V50, Travis
Integration Y

= Azure, 2,
Deployment S -
Google 3

» OMS, Kibana,

Monitoring Sy
Graphite

AVENDORS VIEW OF CD WITH CT

Continuous delivery (CD):
a SW engineering approach
iIn which teams produce
software in short cycles...
o Continuous Delivery is not
Continuous Deployment
o Relies on 3 foundations:
» Configuration management,
 Continuous integration,
e Continuous Testing

o Checkout
code

&

Commit
echanges

—
Developer

)

Source Control

Initiate CI
Process

mwn|Untegraton

H]% - IIFl
I

Eﬁng

Acceptance
Driven Tests

)

Manual
@ Validation

Validation

Release
o to Production Release

MY SET OF TOOL CATEGORIES IN A TOOLCHAIN

Proiect Requirements
Mana Jement Gathering & Versioning
: Management
. Continuous
Monitoring Integration

Configuration

Management

SW
Development & $
Testing* Tools

SUCCESS WITH CT IN WATERFALL AND AGILE

10 COMPANIES KILLING IT AT DEVOPS FrROM TECHBEACON.COM

®1. AMAZON ®6.FACEBOOK

® 2. NETFLIX ®7.ETSY

® 3. TARGET ©8.ADOBE

® 4. WALMART ®9. SONY PICTURES ENTERTAINMENT

®5.NORDSTROM ©10.FIDELITY WORLDWIDE INVESTMENT

WRAP-UP

CT can be used in any development ey r__ g

methodology and provide value sl ey =
A robust toolchain is crucial to successful CD

and CT - Should be in Proposal/TMRR phase P)[R [‘

Good testing practices are still important and By

maybe more so in CT as in any other
development methodology

DevOps demands CT to achieve desired
outcomes of faster delivery with high quality

FINAL COMMENT:

THE WARFIGHTER DESERVES
QUICKER DELIVERIES WITH
RIGHER QUALITY!

	Continuous Testing:�The New normal
	Session Abstract
	agenDa
	Test Types Defined
	Test types defined (cont’d)
	Development methodologies
	Effective and Efficient Test Lifecycle in any Software Development Methodology (WF, Incremental, etc.)
	Effective and Efficient Test Lifecycle in any Software Development Methodology (Agile, DevOps, etc.)
	Effective and Efficient Test Lifecycle in any Software Development Methodology (Agile, DevOps, etc.)
	Continuous testing approaches
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	“Understanding DevOps – Part 4: Continuous Testing and Continuous Monitoring”�by Sanjeev Sharma on sdarchitect.wordpress.com�
	Some Open-source Categories/tools in a toolchain
	A Vendors view of CD with CT
	My set of tool Categories in a toolchain
	Success with CT in waterfall and agile
	10 companies killing it at DevOps from techbeacon.com�
	Wrap-Up
	Final Comment:��The Warfighter deserves quicker deliveries with higher quality!

