

Hypersonics T&E: A University Approach

Dr. Nathan Tichenor and Dr. Rodney Bowersox

NDIA 32nd Annual National Test & Evaluation Conference March 7, 2016 San Diego, CA

WHY HYPERSONICS T&E?

• The underlying physical processes high-speed viscous flows are not v understood.

AFROSPACE ENGINEERING

TEXAS A&M UNIVERSITY

- Non-equilibrium (Thermal, Chemical, Mechanical) and transition significantly effect hypersonic vehicle design and performance
- Real hypersonic vehicles are composed of curved surfaces and complex geometries
- Modern modeling tools require high-resolution experimental validation data to improve performance and applicability to hypersonic problems

FROM THE UNIVERSITY PERSPECTIVE

- Universities are a significant partner in hypersonics T&E
 - University research typically compliments and supports industry and government programs

The National Aerothermochemistry and Hypersonics Laboratory (NAL)

- Mission: to provide a venue for faculty, students, research as sociate and visiting scientists to improve our knowledge and control of high-speed non-equilibrium flows
- The NAL houses a suite of <u>national resource quality hypersolution</u> <u>facilities</u>, instrumentation and numerical methods, most of which are one-of-kind and were developed to address specific problems
- Features a student-driven interdisciplinary culture, where researchers from various disciplines (Aerospace Engineering, Chemistry, Physics and Mechanical Engineering, etc.) work side-by-side to solve complex problems
- The facility has been supported by the AFOSR, AFRL, ARO, NASA, NSF. ONR and Industry

NAL: TRAINING THE NEXT GENERATION

NAL TEAM FACULTY

R. Bowersox (Founding Director, Aerospace) – Hypersonics, turbulent/ transitional flow, thermochemical non-equilibrium, scramjets, facilities & laser diagnostics

R. Miles (Aerospace, NAE) – Hypersonic flight, plasmas, flow control, laser diagnostics

S. North (Co-Director, Chemistry) – Thermochemical non-equilibrium, chemical kinetics & laser diagnostics

H. Reed (Aerospace) – Boundary layer stability and transition simulation

W. Saric (Aerospace, NAE) – Boundary layer stability and transition experiments

E. White (Aerospace, Director LSWT/KSWT) – Transient Growth

D. Donzis (Aerospace) – Turbulence simulation, HPC, thermochemica non-equilibrium

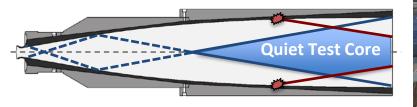
N. Tichenor (Aerospace) – High–Speed Flow Control, facilities & las diagnostics **Government and Industry**

C. Limbach (Aerospace) – Lase

AEROSPACE ENGINEERING TEXAS A&M UNIVERSITY

2016 Sounding Rocketry Team -- 20 Undergraduates

2016 NAL Team -- 20 Students, 2



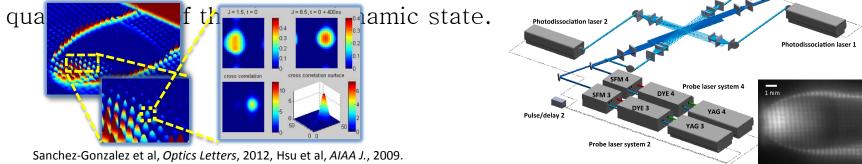
03/07/20

TEXAS A&M FACILITIES: M6QT

- The Mach 6 Quiet Tunnel (M6QT) is a seminal low-disturbance facility that transitioned from NASA Langley to TAMU
- Research focuses include fundamental studies of boundary layer stability and transition.
- The quiet Reynolds number range is 3.0 - 11.0 million per meter. The nozzle diameter is 0.18 m; the run time is 40 s and the duty cycle is 2.5 ho

TEXAS A&M FACILITIES: HXT

- A large-scale Hypervelocity Expansion Tunnel (HXT) that provides total enthalpies up to 11 MJ/kg is under development.
- The facility tube diameter is 0.5 m and will have 1.0 m nozzle exit.
- The planned nozzle exit Mach numbers are 9.0 and 15.0. The overall length of the facility is


TEXAS A&M DIAGNOSTICS: VENOM

03/07/201

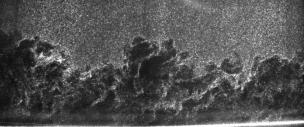
Pulse/delav 1

- We have also pioneered a new non-invasive diagnostic for hypersonic (and other) flows
- Vibrationally-excited NO Monitoring (VENOM) combines MTV and 2line PLIF thermometry to enable direct measurement of the turbulent heat flux.
- A new dual plane system (VENOM2) is under development to provide 3-D velocimetry and a more complete

NDIA 32nd National T&E Conference

TEXAS A&M FACILITIES: ACE

- The Actively Controlled Expansion (ACE) Hypersonic Tunnel is a unique large-scale continuously variable Mach number (5-8) facility
- Research focuses include fundamental studies study turbulent and transitional flows using modern laser diag
- The Reynolds number range is 0.5–10.0 million/meter. The nozzle exit is 0.23 m x 0.36 m; 40 sec run time and 2.5 hr duty c



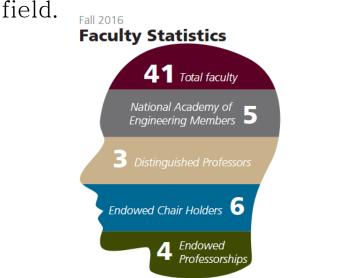
TEXAS A&M FACILITIES: SHR

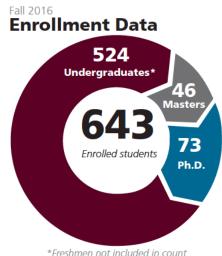
- The Supersonic (M = 2.2, 3.0 and 5.0) High-Reynolds (SHR) Tunnel is a smaller scale high Reynolds number facility (Re/m = 40 - 60 million) developed at TAMU
- Research focuses include fundamental turbulent boundary layer research, scramjet fuel injector studies, diagnostic development, etc.
- 12.7 cm x 12.7 cm nozzle exit with 10 run time

03/07/201

TEXAS A&M FACILITIES: PHACENATE

• The <u>Pulsed Hypersonic A</u>djustable <u>C</u>ontoured Expansion <u>N</u>ozzl e


Aerothemochemistry <u>Testing Environment</u> (PHACENATE) facility is O(10 cm) variable Mach (3-7) facility

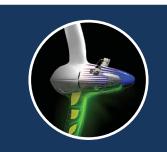

- Research focuses include study non-e-thrium flows.
- Produces a continuous train of 30 ms pulses of high-speed flow (M = 4.5which is synchronized to our Q-swi lasers. The duty cycle is 20 sec.

TAMU AEROSPACE - VISION

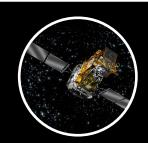
Vision: Aerospace program that attracts top faculty and students, and promotes a passion for providing solutions to the most challenging problems in the

NDIA 32nd National T&E Conference

03/07/2017


TAMU AEROSPACE – CORE COPETENCIES

AEROSPACE ENGINEERING TEXAS A&M UNIVERSITY



A&P. Aerodynamics, Thermochemistry, Propulsion & Energy

M&S. Intelligent & Extreme Environment Materials & Structures

D&C. Autonomy, Controls, Dynamics, Guidance, & Flight Mechanics

S&D. Aerospace Systems and Design

CORE COMPETENCIES

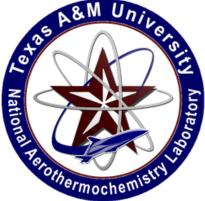
Basic and Applied Research. Closing the gap between modeling, simulation and experimentation. Developing solutions for system integration, design optimization, and operations.

AEROSPACE ENGINEERING

NDIA 32nd National T&E Conference

03/07/2017

13


CONTACT INFORMATION

We are always seeking industry and government collaborations to advance hypersonics research!

Dr. Rodney Bowersox Dept. Head and Director of NAL Aerospace Engineering bowersox@tamu.edu

Dr. Nathan Tichenor Research Assistant Professor Aerospace Engineering ntichenor@tamu.edu

nal.tamu.edu