

GUN & ELECTRIC WEAPON SYSTEMS DEPARTMENT (E)

NDIA Armaments Forum Indianapolis, Indiana Analysis of 25mm PGU-47 APHEI-T Projectile Against Wall Targets

Presented by

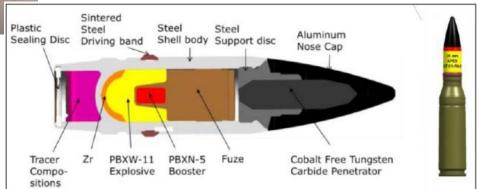
Jim McConkie NSWCDD, E33

7-10 May 2018

Outline

- Analysis Approach
- Test Description
 - Test Data Deficiencies
- ZDATA Construction
 - PMAT Tool
- WarheadView
 - Program Description
 - Probability Of Incapacitation
 - Personnel Model
 - Target Configuration
 - Analysis Description
- Results
- Summary

DISTRIBUTION A. Approved for public release: distribution unlimited.


Analysis Approach

- Assemble warhead characterization file (ZDATA) for each test shot
 - Obtain projectile fragment impact data from E40
 - Determine fragment mass for non-recovered fragments using PMAT
 - Determine impact velocity using velocity screen data or PMAT
 - Compute fragment initial conditions based on impact state and estimated average drag coefficient
- Use WarheadView to compute probability of incapacitation (P_{inc}) of projectile fragments for a matrix of personnel targets
 - 46 personnel targets located in 16x16-foot room
 - Projectile impact point on wall varied using a grid of 468 points
 - Serious and Lethal wounding casualty criteria used
 - Include summer uniform fragment velocity cut-off

Test Description

- Wall target placed in front of 12x16x8-foot plywood room
 - Brick-over-block wall
 - Concrete Masonry wall
- Fragment impact locations on plywood sheets were recorded
- Velocity screens covered back wall and both side walls
- Projectile: PGU-47/U

Wall Targets

Brick-over-Block

ZDATA Construction

- Fragment polar angle and azimuth angle determined from fragment impact location (relative to burst point)
- Fragment impact velocity:
 - For fragments that completely perforated the plywood (non-recovered), velocity screen data was used
 - Otherwise, the lower of velocity screen or PMAT value was used
 - JTCG drag curve used to compute initial velocity
- Fragment mass:
 - Mass was measured for all recovered fragments
 - Otherwise, use PMAT to estimate mass
- Fragment shape assumed to be irregular
- Used ETB format for ZDATA file
 - Allows deterministic analysis
 - Standard JTCG ZDATA format could be constructed if desired

PMAT Tool

🖉 pmat					
Plywood Manikin Analysis Tool - Ver 1.7					
INPUT					
Projectile Shape: Irregular Projectile Material: Steel Criteria: Nude					
Units: English (grains, inches, ft/sec)					
Plywood Data Actual Da	ata				
Hole Measurements: length: velocity:					
width: mass:					
depth:					
depth type: Unadjusted 🛁					
mass (if known):					
Compute					
RESULTS					
	S/L L				
Striking Velocity: C Entire-Body					
C Head&Neck Computed Mass:					
Computed Mass: C Thorax					
Computed Depth: O Pelvis					
C Arms	— <u> </u>				
C Legs					
Output to a file? 「					
Add to Accumulator					
ACCUMULATOR					
# hits A30 A5 D30 D5 S12					
0 0.0 0.0 0.0 0.0					
Clear Accumulator					
Quit					

- Computes fragment mass and impact velocity based on size of hole in plywood (L,W,D)
 - Four fragment material options (steel, tungsten, etc.)
 - Four fragment shapes
- Fragment hole size measured for all fragments that completely perforated plywood layers
- Program can also compute resulting P_{inc} (not used)

WarheadView Description

Warhead Fragment Trajectory Visualization Program

- Program to visually display the trajectories of warhead fragments resulting from the detonation of single or multiple blast-fragment warheads or projectiles.
- Fragment initial positions and velocities are computed according to the warhead characterization (ZDATA) file and combined with the weapon position and velocity
- Each fragment trajectory is simulated until impact and includes effects of drag and gravity (JTCG drag curves are used)
- Number of fragment impacts on each target object is recorded and the probability of incapacitation is computed for each hit
- Multiple weapons against multiple targets can be simulated

DISTRIBUTION A. Approved for public release: distribution unlimited.

DISTRIBUTION STATEMENT A

Probability Of Incapacitation

 Probability of incapacitation (P_{inc}) as a function of the number of lethal hits (N_{Lethal}):

$$P_{inc} = 1 - e^{-N_{Lethal}}$$

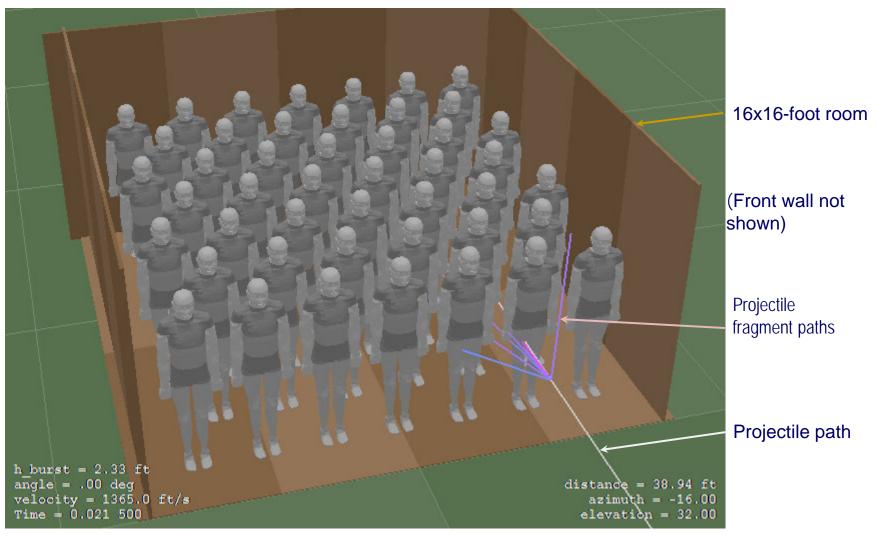
 The number of lethal hits is the summation of the probability of incapacitation (P_{I/H}) of each hit, which is computed using the Sperrazza-Kokinakis (S-K) equation:

$$N_{Lethal} = \sum P_{I/H}$$

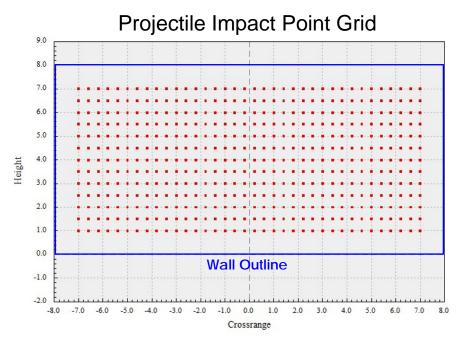
$$P_{I/H} = 1 - e^{-a\left(mV^{\frac{3}{2}} - b\right)^n}$$

• Summer uniform velocity cut-off included:

$$V_{50} = \sqrt{kA/M}$$


$$k = (-1.7942 \log M + 7.543) \times 10^6$$

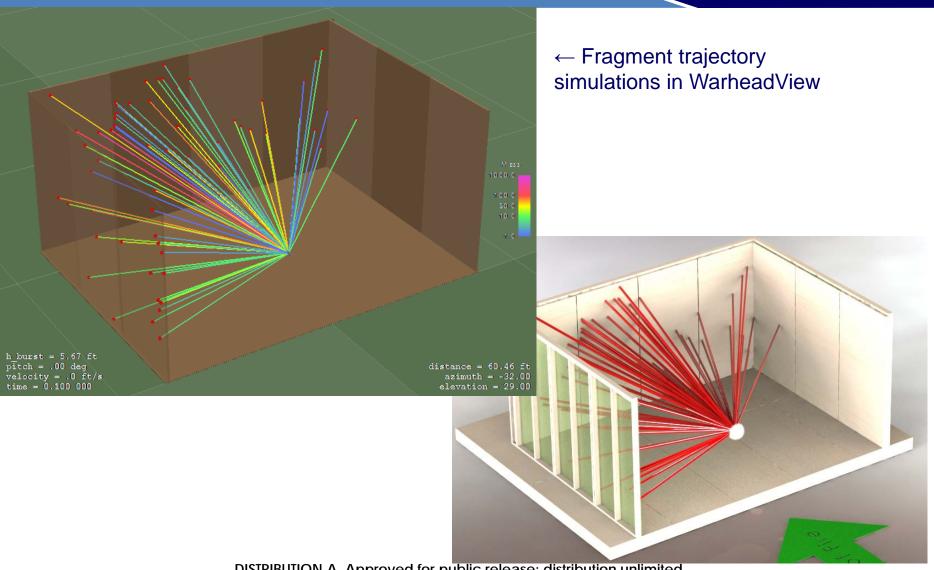
Personnel Model 6-Pt Standing Man


- Personnel model divided into six segments
 - Head/Neck
 - Thorax
 - Abdomen
 - Pelvis
 - Arm
 - Leg
- Separate S-K coefficients for each segment
 - Serious wounding
 - Lethal wounding

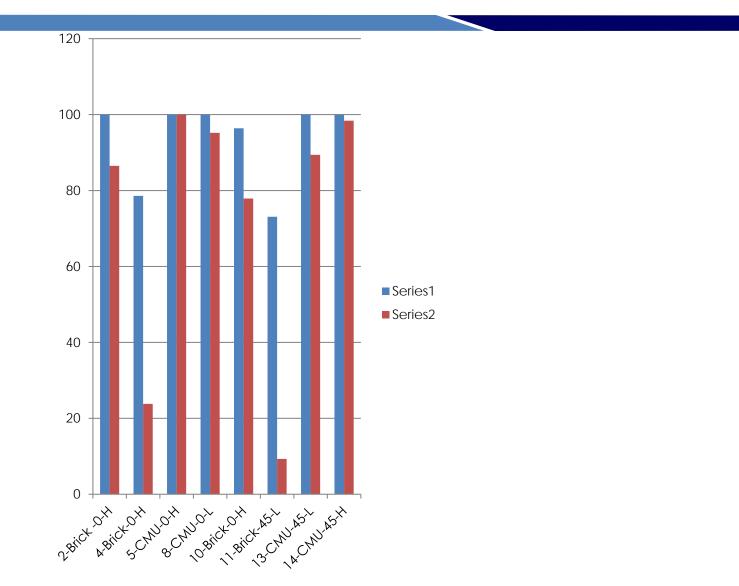
WarheadView Target Configuration 46 Personnel Targets

WarheadView Analysis

- Projectile impact point varied across height and width of front wall
 - Horizontal: -7 to +7 feet, every 0.4 feet
 - Vertical: 1 to 7 feet, every 0.5 feet
- Probability of incapacitation (P_{inc}) computed for each personnel target
 - Serious wounding criteria
 - Lethal wounding criteria
- For each impact point:
 - Average P_{inc} of all personnel targets
 - Maximum P_{inc} for all personnel targets
- 8 test shots analyzed
 - Shots 2, 4, 10, 12 (Brick-over-block wall)
 - Shots 5, 8, 13, 14 (Concrete masonry wall)


WarheadView Analysis Interpretation of Results

- Average P_{inc} of all personnel targets:
 - This is the expected value of P_{inc} for a single projectile against a single personnel located at a random point in the room
 - The reported average value (in the summary table) is the average for all personnel and all impact points
 - This includes the assumption that the projectile impact point is random and uniformly distributed on the wall
 - The power-rule could be used to combine the average P_{inc} in order to get a corresponding value for multiple shots
 - The maximum value of average-P_{inc} (included with plots) represents the best-case impact point (for a single personnel at a random location)
- Maximum P_{inc} for all personnel targets:
 - The reported value represents the maximum across all personnel and all impact points
 - This is the best-case P_{inc} for a single projectile against a single personnel in the room (at the best-case impact location)


Summary of Test Shots PGU-47/U

		Projectile		
Shot	Wall Target	Туре	Angle	Velocity (ft/s)
2	Brick	PGU-47	0	3086.9
3	Brick	PGU-47	0	1993.1
4	Brick	PGU-47	0	3104.0
5	CMU	PGU-47	0	3113.5
8	CMU	PGU-47	0	2128.3
9	Brick	PGU-47	0	2181.1
10	Brick	PGU-47	0	3100.1
11	Brick	PGU-47	45°	1943.2
12	Brick	PGU-47	45°	3110.9
13	CMU	PGU-47	45°	1955.1
13	CMU	PGU-47	45°	3105.6

Fragment Trajectories: Shot

Summary of Test Shots and Results PGU-47/U

DISTRIBUTION A. Approved for public release: distribution unlimited.

Summary

- Eight PGU-47 25-mm shots analyzed
 - Four against brick-over-block walls
 - Four against concrete masonry unit walls
- Projectile fragment mass and velocities were directly measured or estimated from PMAT
 - For Shots 4 & 12 only the penetrator was recorded as penetrating the brick-over-block wall and thru the witness room wall. The Fragmentation was trapped in the wall.
- Average and maximum P_{inc} computed for matrix of personnel targets
- Significant difference observed in P_{inc} between brick wall and concrete masonry (CMU) wall
 - Impact/penetration of CMU wall produced large numbers of fragments, resulting in much higher P_{inc} values

Questions

