

LEAD-FREE PRIMER Panel Discussion

Nammo

Sweden

Lina Norum, R&D Manager SAA

07 May 2018

NDIA Armament Conference / Small Arms Division Themes

"Armament System Response to the Evolving Threat Spectrum"

"Small Arms Technology Which Creates Asymmetric Operational Advantage for Soldiers, Sailors, Airmen and Marines"

Distribution Statement A

Nammo's roadmap of lead-free technology

- History
 - 1996 Sweden specifies lead-free ammunition
 - 1999 Nammo Initial Production for Sweden
 - 2001 Norway adopts the lead-free technology
 - 2004 lead-free 5.56 mm Ball and 7.62 Ball NATO Qualified
 - At present, Nammo makes lead free ammunition in four (4) calibres
 - 4.6 x 30 mm Ball (for MP-7)
 - 5.56 x 45 mm Ball, Tracer, IR-Tracer, Frangible, Blank
 - 7.62 x 51 mm Ball, Tracer, IR-Tracer, Frangible, Reduced Range, Armor Piercing
 - 9 x 19 mm Ball, Frangible
- Technology Challenges
 - Reliable powder ignition by the lead-free primer at all temperatures
 - Copper build-up in the barrels

Nammo's roadmap of lead-free technology

- Cartridge design for 5.56 mm and 7.62 mm
 - Production in standard machinery

Powder - Adapted for lead free primer and projectile

Ignition Chain - Optimized
for lead free system

Lead free primer

Hardened steel penetrator - Optimized for maximal penetration

Steel core - Optimized for reduced driving force, reduced barrel erosion and reduced copper fouling

Gilding metal jacket - Optimized for reduced driving force, reduced barrel erosion, reduced copper fouling and to avoid projectile fragmentation