DISTRIBUTION A: APPROVED FOR PUBLIC RELEASE - DISTRIBUTION UNLIMITED

Always a Step Ahead ARDEC ARMAMENTS

Precision Munition Technology *Abstract #20231*

Presented by: Christopher Parisi & Michael Cataldi

UNPARALLELED COMMITMENT & SOLUTIONS Act like someone's life depends on what we do.

U.S. ARMY ARMAMENT RESEARCH, DEVELOPMENT & ENGINEERING CENTER

UNCLASSIFIED

Emerging/Evolving Threat Spectrum

- Quicker engagements
- Longer ranges

U.S.ARN

ARDEC Precision Small Caliber Munitions

Higher Probability of Hit $(P_{(h)})$ at extended ranges through:

- Higher velocity
- Lower deceleration
- Flatter trajectory
- Less wind sensitivity
- Less user aim error

→ Better accuracy

Design Methodology

U.S. ARMY **RDECOM**®

- Higher sectional density
 - Use of novel/dense materials
- Efficiently packaged projectile mass
 - Low parasitic mass sabots (5%)
 - Minimize KE loss
 - Larger pressure area on projectile base
 - Optimized launch mass
 - Higher muzzle velocity for a given muzzle energy
- VLD (Very-low-drag)
 - Optimized drag shape
- Scalable/Caliber-agnostic

Modeling & Simulation

CREO (CAD)

- Scalable geometry
- Efficient design optimization

U.S.ARN

PRODAS (Empirical Aeroballistics)

U.S. ARMY RDECOM®

- Ballistics/stability/drag/trajectories
- Change gun parameters

366					
Muzzle Velocity	2730.0	ft/sec	Aircraft Velocity	0.0	ft/sec
Air Density	0.07647	lbm/ft^3	Air Temperature	59.0	F
Muzzle Spin Rate	3448.	CPS	Muzzle Exit Twist	28.8	cal/rev
CP from Nose	0.64	inch	CP from Nose	1.89	Calibers
CG from Nose	1.01	inch	CG from Nose	3.00	Calibers
Mach Number	2.45		Gyro Stab Factor	2.02	
Ballistic Coeff.	0.878		Cd at Muzzle	0.232	
Deceleration	352 09	ft/e/1000ft	Muzzle Jump Factor	0.011	mils/red/sec

Velocity (ft/s) vs. Range (m)

Slant Range (m)

FF

Modeling & Simulation

ANSYS Fluent CFD (Computational Fluid Dynamics)

Contours of Velocity on a G7 Shape at Mach 2.2

Modeling & Simulation

U.S.ARI

U.S. ARMY RDECOM®

ANSYS LS DYNA (Explicit Finite Element Modeling)

- Launch models
 - Structural survivability
 - Estimate and verify muzzle velocity

Materials

• High performance plastics

U.S. ARMY RDECOM®

- Withstand extreme temperatures
- Survive gun launch
- Minimize parasitic mass
- Specialty alloys
 - Achieve target density
 - Scalable target effects

Manufacturing

- Metal injection molding
 - · Near net shape with final machining
 - Continued technology push
 - Custom materials
- Plastic injection molding
- 3D Printing
- Unconventional jackets
- Wire EDM, CNC, grinders, Swiss screw machines
- Loading optimization
 - Custom die sets
 - Precision measuring tools

Testing

EPVAT

- Propellant charge
 establishment/optimization
- Structural integrity

Radar

- Capture velocity/deceleration
- PRODAS simulation validation

High Speed Video

- Launch survivability
- Yaw cycle

Accuracy

- Validate ballistics
- Verify overall system effectiveness

Pressure (psi) vs. Time (s)

Performance

- Accuracy \rightarrow 50% reduction in Average Mean Radius
- Deceleration \rightarrow Sonic range increased by 90%
- Trajectory \rightarrow 35m less bullet drop @ 2000m range
- Time to Target \rightarrow 33% less time to 2000m range

CONTACT INFORMATION

QUESTIONS?

Christopher Parisi

U.S. ARMY

U.S.ARN

ARDEC Project Officer US Army ARDEC RDAR-MEM-I, Bldg 65N Picatinny Arsenal, NJ 07806 <u>christopher.c.parisi.civ@mail.mil</u> 973-724-9878

Michael Cataldi

Mechanical Engineer US Army ARDEC RDAR-MEM-I, Bldg 65N Picatinny Arsenal, NJ 07806 <u>michael.cataldi.civ@mail.mil</u> 973-724-6074