

U.S. ARMY RESEARCH, DEVELOPMENT AND ENGINEERING COMMAND

Challenges to Electrifying Defense Combat Systems

Bruce Brendle, Ph.D

Associate Director, Ground Vehicle Power & Mobility

US Army RDECOM Tank-Automotive Research Development & Engineering Center

Operational Impact of Electrification

Reduced Signature

- 75%-90% Acoustic Improvement
- Thermal Fuel Cells Run Cooler
- Remain undetected
- Place dismounts closer to objective undetected
- Enables new TTPs, ex: closer support by fire

Enables Improved Silent Off-Road **Mobility**

- Extended duration
- High Torque
- Greater Terrain Access
- Increases survivability

Enables Water Generation

- 800 kw = 53 gal water/hour

(Fuel Cell only)

Water at point of need

Improves self-sufficiency

Extended Duration without Resupply

- Approx 72hr increase in ABCT endurance @ 70% combat power
- 50%-60% increased duration

Increased Onboard and **Exportable Power**

- Export up to 100% of on-board power
- **Enables Directed Energy**
- Eliminates need for tow behind
- **Decreases TOC footprint**

Extended Silent Watch (Fuel Cell)

- 15 kwh per kg of H2
- 4x duration compared to current fielded batteries
- Enables undetected reconnaissance

Defense Electrification Challenges

Key Characteristics	Hybrid (Power Electronics)		All-Electric (Energy Storage)		Fuel Cell
	Power Density	Temperature Threshold	Capacity (300 mile range)	Charge Rate	Hydrogen Storage
Current / Army or Industry	3kW/L	85C Coolant	~0.15kW/L (best Li Ion)	100 kW	3.4MJ/L
Future Army Requirement	12kW/L	105C Coolant Engine coolant	0.60 kW/L	6 MW	13.6MJ/L
Improvement Required	4x *	24% *	4x **	60x ***	4x ****
Industry Gaps			High power / high energy / temperature a military unique requirement not being developed by industry.	_	Industry not investing in leap ahead military requirement.

^{*} Silicon Carbide power electronics is the emerging capability.

^{**} Beyond Lithium Ion energy storage is required.

^{*** 6} MW = ½ hour fill rate. Desired fill rate is ¼ hour = 12 MW.

^{****} Aluminum powder is most promising future technology.