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@ ibEcom OVERVIEW

Why are we looking at Deep Learning?
What is deep learning?

We are applying it to the study of a diverse set of future Army
systems:

=

Detecting crack damage from ultrasound for Sustainment and Future
Vertical Lift

Intrusion detection / malware analysis (Network / C3I)

Classification of radio modulation (Network / C3I)

Health monitoring of ground vehicles for Next Gen. Combat Vehicle
Monitoring of additive manufacturing for sustainment (NGCV & FVL)
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* @ RDECOM Y There has been rapid advances in machine learning...

 Game-playing Al — DeepGo can beat top
humans

« Semantic segmentation: Towards self-driving
cars

(4 channels per pixel)

* Image classification with ~95% accuracy
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@ ROECOM CAN DEEP LEARNING HELP US?

« What Army problems can be solved with DL?
e Can we trust these black box methods?

e Can DL fit within our power/size constraints?
 Can DL be easily fooled?

e DL usually needs lots of data, can we overcome this
challenge?

At ARL, we are looking at all of these questions.

Lee, Michael, et al. Current and Future Applications of Machine Learning for the US Army. No.
ARL-TR-8345. US Army Research Laboratory Aberdeen Proving Ground United States, 2018.
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» Optimize the parameters of a
complicated function that transforms
some input (e.qg., picture of a cat) into
some output (e.g., ‘label: cat’)

* A neural network with multiple “hidden”
layers

« Uses a mix of convolutional and pooling
(downsampling) layers
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‘ “Cat”

Simple Neural Network Deep Learning Neural Network

@ nput Layer () Hidden Layer @ Output Layer

Convolutional filters
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_ @ #bEcom)) PROJECT #1: DETECTING CRACK
DAMAGE FROM ULTRASOUND

Sustainment Goal:
1) Detect the damage before it even becomes visible.
2) Only replace parts when there is damage.

Actuators
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, @ fibicom)) DETECTING CRACK DAMAGE FROM
ULTRASOUND

The signals are complex, but ML can simplify (and automate) the readout.
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, @ fibicom)) DETECTING CRACK DAMAGE FROM
ULTRASOUND

In the same way that the Post Office automatically reads zip codes,
convert probe signals to crack damage indicator.

Simple MNIST classifier Ultrasound-to-condition regressor
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#ikcom) DETECTING CRACK DAMAGE FROM
ULTRASOUND
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Hyatt, John S., Eliseo Iglesias, and Michael Lee. Convolutional Neural
Leal'n more »  Networks for 1-D Many-Channel Data. No. ARL-TR-8372. US Army
* Research Laboratory APG, MD, US, 2018.
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@ #bEcom) PROJECT #2: INTRUSION
DETECTION & MALWARE ANALYSIS

« Traditionally, threat vectors to a computer system are detected by matching
strings from a known threat database (e.g., antivirus software).

(f8 a4 2e 75)

(a7 63 2f 9c)

03 f8 a4 2e 75 Database of known

Executable byte codes Quarantine threat vectors

* New threats, however, are either encrypted or are uniquely developed for targeted attacks
on a particular asset.

* Therefore, we have to look beyond a threat’s DNA (i.e., executable code) to detect and
understand it.
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@ Bbtcom)) ML FOR INTRUSION DETECTION

(=)
Strateqy:
| -0 -— mm—
Encrypted/obfuscated CPU stream
executable unencrypt in the clear act ,
and unrolled (behavior)
Questions:

» Are CPU instruction streams sufficient to distinguish good and bad activities?

» Does all data need to be fed in? (i.e., could the processing of data be intermittent — realistic
scenario)

e Can novel threat activities be detected?
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| #bEcom}) USING CONVOLUTIONAL NN TO
CLASSIFY PROGRAM FUNCTIONS

Input: GNU hash .
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CPU stream fragments
(1000 opcodes each) OpenSSL hash - .
Embedding layer K 0.6
(16-dim vector encodes £ OpenssL decryption -
100+ unique opcodes) 2 L 0.4
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[ MaxPool (size = 2) } Class Programs
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OpenSSL cryptographic hashes'® | -shal28, -sha256, -sha384, -sha512
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Flatten

OpenSSL decryption algorithms!” | -camellia-256-cbc, -rc2-64-cbc, -aes-256-cbc, -blowfish
Dense layer

GLIBC memory operation tests test-memcpy, test-memchr, test-memmem, test-memcmp

JI

Softmax classifier Compression tools gzip, xz, bzip2, zip

Lee, MS. "Convolutional neural networks for functional classification of opcode sequences." Disruptive Technologies in Information
Sciences. Vol. 10652. International Society for Optics and Photonics, 2018.
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_ #bEcom)) #3: CLASSIFICATION OF DIGITAL
RADIO MODULATION e

- Goals:
- Detect adversary RF modulation, use smart jamming
- Detect adversarial interference, choose best mitigation strategy
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Army Rapid Capabilities
SNR =10 dB Office Challenge: SNR =-10dB

“Clean signal” 24 modulation classes, 6 “Noisy signal”
signal-to-noise ratios
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@ kikcom) FEATURE EXTRACTION &
DETECTION W/ LIMITED DATA

We developed a neural network that extracts and detects
shift(phase)-invariant features from a single data sample.
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@ RDECOMW #4: HEALTH MONITORING OF
GROUND VEHICLES

 Identify useful indicators in data collected from Army
Multi-Purpose Vehicle testing.

 Detect anomalous events.

 Devise automated strategies to detect these anomalies.

UNCLASSIFIED 15



>RV

RBEL‘HM

ARLWOJWTOR

SSSSSSSSSSSS

#4: ANOMALY DETECTION

IN AMPV DATA

Labelled engine speed data

Engine speed (RPM)

Time (seconds)
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Learned features
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@ #bconr)y #5: MONITORING FOR ADDITIVE
| MANUFACTURING

« Additive manufacturing holds promise for making parts
In the field.

« However, we need assurances that these parts are up
to our standards.

e Deep learning will enable

e Closed-loop monitoring (repair issues on-the-fly)

o Certification by real-time assessment
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@ hrbEcom
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#5: MONITORING FOR ADDITIVE

| MANUFACTURING
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@ #bEcom) FUTURE WORK

Future efforts

Malware detection
Radio classification

AMPV
Additive manufacturing

<Your Ildea Here>

More programs (incl. malware); Real-time
monitoring; autonomous cyber agents

ML-based demodulation in the presence
of interference

Data mining with various ML algorithms

Complex builds, intended and unintended
defects

?7?77?
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