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• Collection of quantum systems connected by quantum channels.
• Able to generate, store and manipulate entangled quantum particles.
• Provides distributed entanglement as a resource for information processing.
• Local Operations and Quantum Communications (LOQC) is possible.

A 3-node quantum network

Quantum network for the Physicist Quantum Networks, Van Meter, Wiley 2014
Rev. Mod. Phys. 87, 1379, 2015
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Motivation: Create unconditionally secure communications network regardless of an adversary’s computing  power, mathematical 
genius or cryptanalytic sophistication.

Approach: Use laws of physics to protect both data in transit and data at rest.

Quantum network for the Soldier
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All Protocols limited by rate of entanglement distribution!!!

Communications: Superdense coding, Teleportation

Cryptography: Key distribution, Secret sharing

Distributed quantum information processing: Interferometry, Sensing
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(To appear in J. Mod. Opt., Aug, 2018)
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• Quantum signals cannot be amplified – No Cloning Theorem.                                         Nature 299, 802-803, 1982

• Use a divide and conquer strategy to distribute quantum states.                                      Nature 414, 413-418, 2001

• Distributed states are not perfect – Environment still decoheres.
• Use Swapping, Distillation, Error correction, Optimization to fight decoherence.

Divide and Conquer scheme for lab to field transition.
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Schematic of the DLCZ scheme for entanglement distribution.
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Memory Characteristics
• Memory charging is probabilistic. Real memories decohere.
• Access time: Time spent by an entangled state in memories before being accessed/discarded.
Different Protocols
• Optimized Access-time Protocol: Control waits for a finite time after which memories are reset.
• Canonical Protocol: Control waits as long as it takes to charge both pairs.

Access time of quantum memories Entanglement swapping for arbitrarily degraded states - BK, SS, VM, MB, 2016
Quantum repeater architecture with hierarchically optimized access times - SS, LJ, VM, 2018

How long should Quantum memories hold their charge before a refresh?
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Rate of entanglement generation 

• Entangled states stored in a pair of quantum memories lose their phase coherence.

• Closer charged states yield better swapped states ((k1, k2) are charging steps for the pairs): 
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𝜌𝜌𝑠𝑠(𝑘𝑘1, 𝑘𝑘2) =
1 + 𝛽𝛽|Δ𝑘𝑘|+2

2
𝜌𝜌− +

1 − 𝛽𝛽|Δ𝑘𝑘|+2

2
𝜌𝜌+

𝑅𝑅𝐷𝐷𝐷𝐷𝑂𝑂 =
𝑝𝑝𝑆𝑆[1 − (1 − 𝑝𝑝)𝑛𝑛]2

𝑛𝑛(2𝜏𝜏𝐶𝐶)
𝐸𝐸[𝜌𝜌𝑂𝑂(𝑝𝑝,𝛽𝛽,𝑛𝑛)]

• Entanglement generation rate: 𝑅𝑅𝐷𝐷𝐷𝐷𝑂𝑂 = Rate of obtaining average state x Distillable entanglement of the state



UNCLASSIFIED

UNCLASSIFIED

8

Ratio of entanglement generation rate in the 
optimized protocol to that in the canonical protocol

Ratio of rates scales as (1/p) for low ( p,   ) region. 𝛽𝛽

Optimized protocol yields manifold increase of entanglement generation rate

𝑛𝑛opt ∼
1
𝑝𝑝
𝜏𝜏𝑀𝑀
𝜏𝜏𝐶𝐶

• Optimal access time depends on location in parameter space:
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• Nesting levels form self-similar systems.
• Each nesting level has own optimal access time:

𝑖𝑖 = 1

𝑖𝑖 = 2

𝑖𝑖 = 3

𝑝𝑝in
(2)
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(1)𝑝𝑝in
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𝑆𝑆(2) 𝑆𝑆(3)

𝑝𝑝in
(3)
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𝜏𝜏𝐶𝐶
(1),𝛽𝛽(1) 𝜏𝜏𝐶𝐶

(2),𝛽𝛽(2) 𝜏𝜏𝐶𝐶
(3),𝛽𝛽(3)

𝑝𝑝

𝑛𝑛opt
(𝑖𝑖) (𝑝𝑝(𝑖𝑖),𝛽𝛽(𝑖𝑖),𝑝𝑝𝑠𝑠) = ArgMax𝑛𝑛(𝑖𝑖)[𝑅𝑅𝐷𝐷𝐷𝐷

𝑂𝑂,(𝑖𝑖)(𝑝𝑝(𝑖𝑖),𝛽𝛽(𝑖𝑖),𝑛𝑛(𝑖𝑖))]

Optimization can be implemented hierarchically at every nesting level

Ratio of entanglement generation rates vs nesting level
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Ions NV centers Superconducting 
qubits

Atomic ensembles 

Number of physical 
qubits/register

14 5 10 N/A

Coherence time 600 s 1 s (nuclear) 100 μs 1 ms

Gate time 10 – 100 μs 10 μs 300 ns Linear optics gates

Gate error rate 10-3 10-3 6 x10-3 N/A

Photon coupling 
efficiency

4% 15% No demonstration >85%

Wavelength conversion 
efficiency 

9% (Yb) No demonstration 10% 
(classical)

0.3% (including collection 
efficiency)

Spin-photon 
entanglement success 

probability

0.07 10-6 No demonstration 3x10-4

• OAP Advantage:

S. Muralidharan, PhD. Thesis, Yale 2017State of the art values for QR platforms
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• Optimizing access time mitigates decoherence allowing high-rate entanglement generation.

• Enables unconditionally secure communication, cryptography and distributed computation.

• Platform independent, universal optimization methods can bring us to the threshold of quantum 

enhanced information processing.

Thanks for your attention!

Conclusions
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