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Quantum network fOl‘ the PhyS|C|St Quantum Networks, Van Meter, Wiley 2014

Rev. Mod. Phys. 87, 1379, 2015
» Collection of quantum systems connected by quantum channels.

» Able to generate, store and manipulate entangled quantum particles.
* Provides distributed entanglement as a resource for information processing.
» Local Operations and Quantum Communications (LOQC) is possible.
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A 3-node quantum network



Quantum network for the Soldier
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Motivation: Create unconditionally secure communications network regardless of an adversary’s computing power, mathematical
genius or cryptanalytic sophistication.
Approach: Use laws of physics to protect both data in transit and data at rest.



PHYSICAL REVIEW

Communications: Superdense coding, Teleportation
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Cryptography: Key distribution, Secret sharing

Quantum cryptography: Quantum Secret Sharing
Public key distribution and coin tossing ™
Mark Hillery!, Vladimir Buzek?, and André Berthiaume®
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Distributed quantum information processing: Interferometry, Sensing

A quantum network of clocks Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects

P. Kémar, E. M. Kessler, M. Bishof, L. Jiang, A. S. Serensen, J. Ye & M. D. Lukin

Applications

I C.Monroe, R. Raussendorf A. Ruthven, K. R. Brown, P. Maunz, L-M. Duan, and J. Kim

Nature Physics 10, 582-587 (2014) Download Citation & PhYS RE‘V. Aag‘ 02231? _ Pl.lb||5h€‘d 13 FEerﬂW 2014
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The quantum internet Entanglement enabled telescopic arrays in the presence of decoherence
) (To appear in J. Mod. Opt., Aug, 2018)
- ) Kimble Siddhartha Santra, Brian T. Kirby, Vladimir S. Malinovsky, Michael Brodsky
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All Protocols limited by rate of entanglement distribution!!!
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Divide and Conguer scheme for lab to field transition.

Quantum signals cannot be amplified — No Cloning Theorem. Nature 299, 802-803, 1982
Use a divide and conquer strategy to distribute quantum states. Nature 414, 413-418, 2001
Distributed states are not perfect — Environment still decoheres.

Use Swapping, Distillation, Error correction, Optimization to fight decoherence.

RB KRB &XB

BS BS BS

S12 S34 S56 S78

Schematic of the DLCZ scheme for entanglement distribution.
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Memory Characteristics
* Memory charging is probabilistic. Real memories decohere.
» Access time: Time spent by an entangled state in memories before being accessed/discarded.

Different Protocols
» Optimized Access-time Protocol: Control waits for a finite time after which memories are reset.

» Canonical Protocol: Control waits as long as it takes to charge both pairs.

How long should Quantum memories hold their charge before a refresh?
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Rate of entanglement generation
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* Entangled states stored in a pair of quantum memories lose their phase coherence.

» Closer charged states yield better swapped states ((k,, k,) are charging steps for the pairs):
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« Entanglement generation rate: RY,. = Rate of obtaining average state x Distillable entanglement of the state
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Optimized protocol yields manifold increase of entanglement generation rate
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Ratio of entanglement generation rate in the
optimized protocol to that in the canonical protocol

Ratio of rates scales as (1/p) for low ( p, ﬁ) region.
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» Optimal access time depends on location in parameter space: n opt ~ M
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Optimization can be implemented hierarchically at every nesting level
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Ratio of entanglement generation rates vs nesting level

* Nesting levels form self-similar systems.

« Each nesting level has own optimal access time: "(o% p®, B, p) = ArgMax, o [ROD (p®, BO, n®)]



US. ARMY

BDECOM

ARL  RESEARCH LARBORATORY

)

V

State of the art values for QR platforms

S. Muralidharan, PhD. Thesis, Yale 2017

lons NV centers Superconducting Atomic ensembles
qubits
Number of physical 14 5 10 N/A
gubits/register
Coherence time 600 s 1 s (nuclear) 100 ps 1ms
Gate time 10 — 100 ps 10 us 300 ns Linear optics gates
Gate error rate 103 103 6 x103 N/A
Photon coupling 4% 15% No demonstration >85%
efficiency
Wavelength conversion 9% (Yb) No demonstration 10% 0.3% (including collection
efficiency (classical) efficiency)
Spin-photon 0.07 106 No demonstration 3x10+4
entanglement success
probability

®* OAP Advantage: p=.01%,7a = 0.1mS, Lo = 20km, 3 = 0.13,ps = 0.5,pr =1 = 7 =10"
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Conclusions

Optimizing access time mitigates decoherence allowing high-rate entanglement generation.
® Enables unconditionally secure communication, cryptography and distributed computation.

® Platform independent, universal optimization methods can bring us to the threshold of quantum

enhanced information processing.

Thanks for your attention!
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