ARMY SCIENCE & TECHNOLOGY

SYMPOSIUM AND SHOWCASE EMPOWERING A SOLDIER'S SUCCESS

August 21 – 23, 2018 Walter E. Washington Convention Center http://www.ndia.org/army-science

INTELLIGENT SYSTEMS

Tactical short range radar for personnel tracking with split-brain autoencoders

Mr. Rory McHenry, Engineer

Mr. Samuel Savage, Software Design Engineer Lead

Dr. Svetlana Foulke, Sr. Principal Systems Engineer

Alion / Weapon Systems and Sensors / Rapid Solutions Group

August 23, 2018

ALION

INTRODUCTION

We use **AI** to enhance the efficiency of radar detection, tracking, and **classification** in complex clutter environments.

As a stand-in for conventional signal processing, AI has potential benefits: it reduces computational overhead, enables detection in low SNR, and improves classification.

We explore **representation learning** using a convolutional architecture with actual unlabeled data, perform experiments to establish usefulness of new data mining techniques, and apply them to our radar target classification system.

- convolutional auto encoder with split-brain structure and L1 sparsity regularization
- convolutional recurrent neural network (to predict future Doppler spectrum)
- **linear classifier** (to classify tracks from learned representations)

Finding: the network **learned unsupervised representations** for a moving human target and for clutter, with an underlying ability to discriminate them.

Speculation: a single network can stand in for a large number of different processing steps to simplify a system.

APPLICATION

MOTIVATION

ARCHITECTURE

ALION

GOAL

- Our radar prototype demonstrated capability to track personnel moving behind three walls; however, the multi-path returns and other moving objects in the scene create complications.
- The user desires include
 - an **improved classification** capability
 - a capability to discriminate men from women and children
- Tremendous success of ML in object classification in images for disparate applications suggest a **potential applicability of such Al tech** for our classification problem.
- We can shape radar data as **images** with
 - dimensions: time, Doppler, range, azimuth, etc.
 - features depending on the chosen dimensions, relative location/orientation of the radar face to the structures, and on the choice of Doppler resolution.
- Our goal is to examine utility of ML for improved classification.

ALION RADAR Findr™

Alion Findr™ is a man-portable battery-powered multi-mode FMCW radar for foliage penetration, sense through the wall (STTW) surveillance of personnel, and tracking of autonomous vehicles both on the ground and in the air.

The **STTW mode**

- detects and tracks people moving within structures and behind obstructions
- provides operators the ability to identify the number of personnel and their location inside buildings from up to 150m standoff distance

Wall

- detects all moving objects (vehicle, stationary equipment with moving parts, aircraft, animals, birds, vegetation, and humans) and classifies them
- tracks are delivered real-time to a laptop with COP via 4G LTE wireless link
- a typical standoff detection range is ~70m with 1.5m range resolution

A L I O N

NEED TRAINING-DATA FOR ML

Radar datacube: 3D FFT (range, Doppler, azimuth/beam) of the time domain data from the radar from various US DoD sponsored events, including

- 2018 Urban 5th Generation Marine (**U5G**) Advanced Naval Technology Exercise (**ANTX**), Camp Pendleton, CA
- US Army Special Ops Command (USASOC) 2018 Thunderstorm Technology Demonstration and Evaluation, Fayetteville, NC

Plan

- create a semi-annotated dataset (from actual data)
- classify 'target' from 'no-targets' in small regions of range-Doppler preprocessed data fields (images)

Dataset

- dataset shape (2368, 7, 7, 3)
- labels shape (2368, 2) using one-hot encoding
 - 1184 examples of each class, and each example is a complex 7x7x3 cube slice of the datacube
 - 'target' examples generated using detections from CFAR
 - 'no-targets' random selections from the datacube

ML ARCHITECTURE USED

Supervised feed-forward convolutional network

- Trained a simple network to classify target/no-target
- Achieved 92% classification accuracy
- Computed on low-cost GeForce GTX 970, using tensorflow
- Training time depends on dataset and hyper parameters (ranging from hours to days)

Convolutional split-brain

- Divide an unlabeled dataset into two: use one as labels and the other as input
- Let the neural network learn a representation without labeled data
- This technique works as a feature extraction on images with similar spatial structure to radar images

Long Short Term Memory (LSTM) with convolutional layers

- Run inference by processing each new row of data as it arrives (more efficient than the convolution-over-time approach, processing larger amount of history at each time step)
- Train to predict future frames from past frames. Use a variable amount of history for the prediction. The long term memory is promising for learning a running representation

Add time dimension

LSTM WITH CONVOLUTIONAL LAYER

RESULTS

To verify that the LSTM has learned the structure of the training data, it's predictions can be fed back into it's input to create a possible Doppler history.

The arm swing Doppler patterns appearing in the generated Doppler history provide proof that the network has learned an internal representation of these patterns.

EXAMPLES OF POTENTIAL CLASSES

CONCLUSIONS

- There is clear feature extraction however better performance is likely possible.
- We tested several architectures.
 - Can improve classification with traditional conv net by using more labeled data and deeper net architecture
 - Can pair a **linear classifier** with a net trained using unsupervised learning
- We found that shallow configuration (4 layers) can be adequate for feature extraction and feature representation on our radar data.
- We apply our representation as training data for a linear classifier and find that the classifier is effective on small amounts of labeled data. With additional data, we expect generalization to unseen targets.
- Speculations:
 - Using conv net over time appears to be equivalent to using LSTM with memory periodically erased
 - unlabeled data may be sufficient

CLOSING

The practical applications of the research is in creating a learned representation of radar images, which includes detecting, tracking, and classifying the radar targets in complex environments.

The following are anticipated changes to existing practice resulting from this research:

The change in design and signal processing philosophy: there is no longer a need to
engineer algorithms based on known statistics to discriminate targets because the
neural network organizes data from an existing dataset, finds a process that extracts
features, and approximates a classification function. Subsequently, we can use the
neural network as a substitute for the engineered algorithm.

The unique finding of this research is the confirmation that the network is capable of learning an unsupervised representation for a moving human target and for clutter with an underlying ability to discriminate them.

Thank You!