Autonomous Vehicle Simulation (MDAS.ai)

Sridhar Lakshmanan

Department of Electrical & Computer Engineering University of Michigan - Dearborn

Presentation for Physical Systems Replication Panel – NDIA Cyber-Enabled Emerging Technologies Symposium

Core Areas of Expertise

		Key words	Faculty Involved
1	Perception Big Data	Machine learning Bayesian Inference Sensor fusion	Sridhar Lakshmanan Yi Lu Murphey Paul Watta
NONO	Intelligent Control	Autonomous vehicles UAV Industrial robots	Stan Baek Yu Zheng Samir Rawashdeh Michael Putty
AUT	Vehicle Communications	v2v v2i v2p	Paul Richardson Weidong Xiang Chun-Hung Liu
	Standards	SAE On-Road Automated Vehicle Systems (J3016) / Functional Safety (ISO 26262) RVSWG \rightarrow 20 light and medium trucks standard	Steve Underwood Mark Zachos
	Cybersecurity	Fingerprinting ECU's IDS	Hafiz Malik Di Ma
	Power Electronics	Solid state convertors Electric drives Charging	Kevin (Hua) Bai Maggie Wang Taehyung Kim Wencong Su
	Sensors & Chips	Chip Design / SOC Nano technology Solid state optics	Riadul Islam Alex Yi

Autonomous Navigation: Army ATD

Miniature Robots: Army SBIR

Lane Detection: Army

Sridhar Lakshmanan

Ph.D. Electrical & Computer Eng. (UMass-Amherst) **Associate Professor University of Michigan–Dearborn** Office: SFC 212 313.593.5516 (O) 734.646.8920 (M)

lakshman@umich.edu linkedin.com/in/slakshmanan researchgate.net/profile/Sridhar Lakshmanan http://www.MDAS.ai

Sensor Fusion: DARPA

DEARBORN

Driver Monitoring: NHTSA

Pedestrian Detection: Ford URP

✓ Design, Build & Test

- ✓ Why simulate?
 - > Bring data back
 - > Requirements
 - ➤ Failure modes

MDAS.ai Timeline & Ecosystem

Mobility Model

Capabilities

- Campus mobility model is Physics-based and not based on empirical data (see next sheet)
- Special case of the Next-Generation NATO Reference Mobility Model (<u>NG-NRMM</u>)
- Computer model is validated by real data from the physical shuttle MDAS.ai, and conversely, computer model is used to improve on-road performance of the vehicle
- Model output is performance metrics such as Mobility, Traversability, Repeatability, Reliability
- Model used to:
 - ✓ Assess and compare autonomous systems in campus/urban environments
 - ✓ Compare autonomous systems to baseline human-driven systems
 - ✓ Benchmark progression of autonomous systems from Level-0 to Level-5
 - ✓ Assess performance of Perception Systems and Control Strategies

High-Fidelity Simulation: System of Systems of Systems

> Import 3-D models of the environment / build one in real-time

Environment

- > Determine availability, accuracy of geo-location: \pm GPS \pm INS \pm IMU
- > Introduce a variety of dynamic 3-D actors into the environment: people, vehicles, animals, etc.
- > Individually program the trajectory for each of these actors: location, path, speed, timing, etc.

- > Deploy a library sensors: cameras, stereo heads, IR cameras, LIDARs, FMCW Radars, Ultrasound sensors Perception
- Fine tune these sensors at component level: optics, electronics, illumination, etc.
- Model environmental conditions that affect sensing: weather, lighting, smoke, etc.
- Deploy a library of algorithms, including opensource (ROS): path, static /dynamic objects

Control

- > Specific a mobility mission: Leaderfollower, point-to-point, path, speed, time, etc.
- > Deploy a library of control algorithms, including open-source (ROS) ones, to meet mission objectives

Performance

> Quantify mobility: Speed vs. Trafficability, Time vs. Situational Awareness, etc.

Vehicle

- > Select a vehicle and associated power-/drive-train: electric, hybrid, fuel, etc.
- > Articulate motion: traction, brake, throttle, steering, teleop, etc.