DE LA RECHERCHE À L'INDUSTRIE

61ST ANNUAL FUZE CONFERENCE SAN DIEGO, CA, USA, MAY 15-17, 2018

EMBEDDED HIGH G SHOCK SENSOR BEHAVIOR ANALYSIS FOR SEVERE PERFORATION TESTS

Sérey CHHIM – Aurélien HOTTELET – Don-Pierre ZAPPA – Olivier PIROTAIS – Bernard DEMESURE

CEA DAM, GRAMAT F-46500 Gramat, France serey.chhim@cea.fr

OVERVIEW

■ CEA Gramat is the French leader in research on the lethality of weapon systems

One field of investigation deals with fuze mechanical resistance to high-velocity

projectile impact (military penetration warhead)

Simulation: perforation of a concrete slab by ammunition

- Objective of CEA Gramat studies: characterize the mechanical shocks that can damage fuzes
 - Mechanical environnement can be used as input for Industry to design fuzes
- In order to characterize the mechanical environment, high-G PCB triaxial accelerometer is used
 - Measurement range of 60 000 g and resonance frequency around 160 000
 Hz
 - ► The sensor is limited in maximum range and bandwidth measurement
 - In our applications, we want to measure high acceleration ranges (> 60 000 g) at high frequencies (>160 000 Hz)

ACCELERATION SIGNAL: SENSING PROPERTIES FOR FULL FREQUENCY CONTENT ACQUISITION

GOAL: characterize the mechanical environment transferred from the warhead body to the fuze body

Range needed
Current range

Numerical simulations show that:

- We need x2 Sensor Maximum Range
- We need x30 Sensor Maximum Bandwidth

SENSOR MODELLING / SIGNAL CONVOLUTION

Physical value $ig(m.\,s^{-2}ig)\ ec{\gamma}(t)$

Sensor response

$$(m. s^{-2} \rightarrow pC \ or \ mV)$$

 $S_{sensor}(t) = G(f) \otimes \gamma(t)$

Acquisition $(pC \ or \ mV -> bits)$

Displacement of M:

$$\ddot{u} + 2\omega\xi\dot{u} + \omega_0^2 u = \frac{\gamma_i}{m}$$
with $\xi = \frac{D}{2\sqrt{KM}}$ et $\omega_0^2 = \frac{K}{M}$

Transfer function

$$G(f) = \frac{G_0}{\sqrt{\left(1 - {\binom{f}{f_0}}^2\right)^2 + \left(2 {\binom{f}{f_0}}^2\right)^2}} \text{ and } \varphi(f) = -arc \tan \left(\frac{2\xi {\binom{f}{f_0}}}{1 - {\binom{f}{f_0}}^2}\right)^2}$$

Frequency

Accelerometric sensors are springmass-damper systems

- Physical value is acceleration
- Acceleration is measured through displacement of mass M which modifies piezo-resistive gage resistance
- Mechanical sensor response is given by its transfer function.
- Usable frequency range: where gain is constant and equals to unity
- Knowledge of transfer function allows artificial increase bandwidth by inverse convolution

EXPERIMENTAL SETUP – TERMINAL BALLISTICS

Projectile before impact

Projectile recovery after the test

CEA | May 16 2018 | PAGE 5/13

EXPERIMENTAL RESULTS

Acceleration (g)

Time (ms)

Raw signal provided by the sensor

- Longitudinal acceleration
- The signal overruns 60 000 g
- The sensor keeps its full integrity

Time (ms)

Butterworth filter (Fc = 10 kHz and 5 kHz)

NUMERICAL SIMULATIONS

Purpose: evaluate the sensor response at the point of interest thanks to numerical simulation

Measurement of the acceleration signal at the block mounting parts

Physical value $(m. s^{-2})$ $\vec{\gamma}(t)$

- Method:
- Penetration simulation with a 3D full description of projectile => output = acceleration time history values at the location of the deported sensor
- Convolution of the calculated value (cf. slide 'sensor modelling / signal convolution')
- Comparison with recorded signal of the deported sensor

Sensor response $(m. s^{-2} \rightarrow pC \ or \ mV)$ $S_{sensor}(t) = G(f) \otimes \gamma(t)$

Comparison between sensor response 'from simulation' / sensor

response from the experiment

NUMERICAL MODEL DESCRIPTION

Finite element model

- Total mass: 12.6 kg
- 325 000 brick elements
- Target: 3.3 M brick elements

Simplified assumptions

- No preload, only tied interfaces between components: sensor is tied to the steel confinement
- Finite elements erosion is enabled to allow the projectile to progress through the target
- Target : Elastic and plastic behavior in Ls-Dyna combined with MAT_ADD_EROSION
- No gravitational loads are applied

NUMERICAL SIMULATIONS: RESULTS

NUMERICAL SIMULATIONS: RESULTS

- Graph A: acceleration vs time signals comparison experiment / simulation at low frequencies range (curves are smoothed with a 300-pt moving average ≈ low pass filter)
- Good agreement between simulation and experimental acceleration signals
 - Peak acceleration is the same, duration of penetration in the target is the same
- Good agreement between simulation and experimental velocity time histories (Graph B)
- Simulation results match experimental data
- ► At low frequencies range (Graph A): calculated acceleration time history matches the experimental data => same duration and amplitude of accelerations

Time (ms)

SENSOR BEHAVIOUR APPLIED TO NUMERICAL SIGNAL

Calculated averaged signal of acceleration

 Low frequencies validated by experiment as it has previously been shown

Extended bandwidth signal

- _ 0 300 000 Hz
- The highest acceleration amplitudes are due to sensor resonant frequency

Graph B: Simulated sensor response is significantly different from the experiment for the high frequencies range

CESA L'INDUSTRIE

CONCLUSION

- The mechanical environnement can be used as input for Industry to design fuzes: it has to be characterized
- The 60 000 g sensor used in our experimental setups has several limitations:
 - acceleration range is too low
 - frequency range, where gain is constant, is lower than our requirements
 - resonant frequency can disturb measurement
- The study shows an approach that gives a more accurate fuze mechanical environment focused on high frequencies
 - Based on high performance numerical simulation (evaluation of the physical acceleration signal that is to be to measured)
 - Simulation combines ideal sensor behavior at high frequencies without mechanical stops
 - In practice, sensor bandwidth has been increased
- Observations & Future Works
 - Resonant frequency is preponderant and provides the highest, non-physical acceleration amplitude
 - Sensors need to be improved to collect more physical information:
 - Increase maximum range
 - Increase maximum bandwidth

Thank you for your attention Questions?

Commissariat à l'énergie atomique et aux énergies alternatives
Centre de Gramat | BP 80200 46500 Gramat
T. +33 (0)5 65 10 54 32 | F. +33 (0)5 65 10 54 33
Etablissement public à caractère industriel et commercial |
RCS Paris B 775 685 019

Direction
Département
Service