

"State of the Art Fuze Batteries and their Performance"

61th Annual Fuze Conference May 15th - 17th, 2018 Roland Hein Diehl & Eagle Picher GmbH

Overview

- Introduction of the Design Features of Reserve Batteries
- Reserve Battery Versions
- Reserve Battery Versions Overview
- Reserve Battery Application
- Reserve Battery Testing
- Reserve Battery Versions Summary
- Recommendations for Fuze Electronic Design
- Future developments

Introduction of the Design Features of Reserve Batteries

- Primary Design Features of all Reserve Batteries
 - Lithium Metal Battery
 - Lithium Thionylchloride electrolyte (LiSOCl₂)
 - glass ampoule
 - release mechanism/activation mechanism
 - metal to glass seal
 - hermetically sealed stainless steel case
 - 100 % helium leak test

Reserve Battery - Versions

Battery Parameter

Diameter max.: 18,2 mm (0.72 in)

Height: 13,7 mm (0.54 in)

Electrode Area: 1,4 cm² (0.22 in²)

Volume: 1,8 cm³ (0.11 in³)

Diameter max. : 32,2 mm (1.27 in)

Height: 25,5 mm (1.0 in)

Electrode Area: 3,5 cm² (0.54 in²)

Volume: 15 cm³ (0.92 in³)

Diameter : 11 mm (0.43 in)

Height: 11 mm (0.43 in)

Electrode Area: 0,4 cm² (0.06 in²)

Volume: 1,0 cm3 (0.06 in3)

Reserve Battery - Versions Overview

"Large"	"Large"	"Midi"	"Mini"	"Ultra Mini"
DEP14001	DEP14007/17/12	DEP14020/21	DEP14202	DEP14103
5 – 10 cells	5 – 10 cells	1 – 4 cells	1 – 2 cells	1 cell
7 cells	8 cells	2 cells	2 cells	1 cell
25.2 V	28.8 V	7.2 V	7.2 V	3.6 V

Reserve Battery - Application

Reserve Battery in a typical application

1. How much Power does the Fuze Electronic need?

Reserve Battery - Application

Reserve Battery – Internal Resistance

- 1. How much Power does the Fuze Electronic need?
- 2. What is the minimum Voltage for operating a Fuze Electronic ?

Reserve Battery - Application

Reserve Battery – Equivalent Circuit Diagram

Reserve Battery - Testing

Reserve Battery – Battery-Test-System

Flexibel Configuration of

- Acceleration Pulse
- Rotation
- Electrical Load

Reserve Battery - Testing

Reserve Battery – Test Results (Example)

- 1. How much Power may a Fuze Electronic require at what time?
- 2. What is then the minimum Voltage for operating a Fuze Electronic?

Reserve Battery - Versions Summary

"Large"	"Large"	"Midi"	"Mini"	"Ultra Mini"
DEP14001	DEP14007/17/12	DEP14020/21	DEP14202	DEP14103
5 – 10 cells	5 – 10 cells	1 – 4 cells	1 – 2 cells	1 cell
7 cells	10 cells	2 cells	2 cells	1 cell
25.2 V	28.8 V	7.2 V	7.2 V	3.6 V

Volume	15 cm ³	11,7 cm ³	1,8 cm³	1,0 cm ³
Cell Area (ea.)	3,5 cm ²	3,5 cm ²	1,4 cm ²	0,4 cm ²
Spec. Current	235 mA/cm ²	187 mA/cm ²	150 mA/cm ²	80 mA/cm ²
Rec. Max. Power	3100 mW	2800 mW	1400 mW	140 mW

Recommendations for Fuze Electronic Design

- Timing of Power Electronic Fuze Parts
 - Controlled Charge of Ignition Capacitors
 - Start Up of µController (delayed)
 - Switched Sensor Start
- No "Big" Capacitors on Power Inlet (DC/DC-Converter)
- Small Power Buffer (Capacitors) for Actuators
- Moderate Power Consumption can lead to Standard Fuze Battery
- Involve D&EP early in Power Consumption of your Fuze Electronic

Future developments

- 1 & 2 cell batteries for high spin and high acceleration application
- Development on super quick in barrel activation batteries for artillery and naval versions
- Development of new electrode material for higher current / power application

Thank you for your attention!

Questions?

Diehl & Eagle Picher Contact

How to Contact us

Presenter Roland Hein

Mail Diehl & Eagle Picher GmbH

Fischbachstrasse 20

90552 Roethenbach ad Pegnitz

Germany

Phone +49-911-957-2589

• Fax +49-911-957-2830

Email Roland.Hein@diehl-eagle-picher.com

Web www.battery.de