

Chemical Neutralization and Destruction of Bulk and Residual Energetics in Different Materials

August 10, 2018

Presented to:

2018 GLOBAL EXPLOSIVE ORDNANCE DISPOSAL (EOD) SYMPOSIUM & EXHIBITION Washington DC. USA

COUNTER UXO – ADDRESSING ENVIRONMENTAL IMPACTS

Presented by:

Valentine Nzengung, PhD Professor University of Georgia

3675 Crestwood Parkway Atlanta, GA 30096

www.munirem.com

vnzengung@munirem.com

Presentation Outline

- Introduction to MuniRem[™] technology
- Full scale chemical neutralization of bulk explosives
- Chemical neutralization of bulk explosives abandoned on demilitarization equipment
- On-site demilitarization of recovered underwater munitions
- In-Situ remediation of explosives contaminated soils
- Summary and Conclusions

INTRODUCTION TO MUNIREM TECHNOLOGY

Options for Chemical Neutralization

- Chemical Oxidation
 - Alkaline Hydrolysis
 - Activated Persulfate
 - High Temperature Oxidation
- Chemical Reduction
 - MuniRem
 - Nano Zero Valent Iron (nZVI)

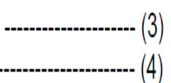
MuniRem ENVIRONMENTAL

What is MuniRem?

- MuniRem is the commercial name for a University of Georgia Research Foundation patented technology that employs reduction chemistry to rapidly neutralize and destroy explosives and energetics in different media.
- MuniRem also degrades chemical warfare materiel (CWM) and stabilizes metals.
- The end product is non-hazardous.
- MuniRem is licensed exclusively to MuniRem Environmental, LLC

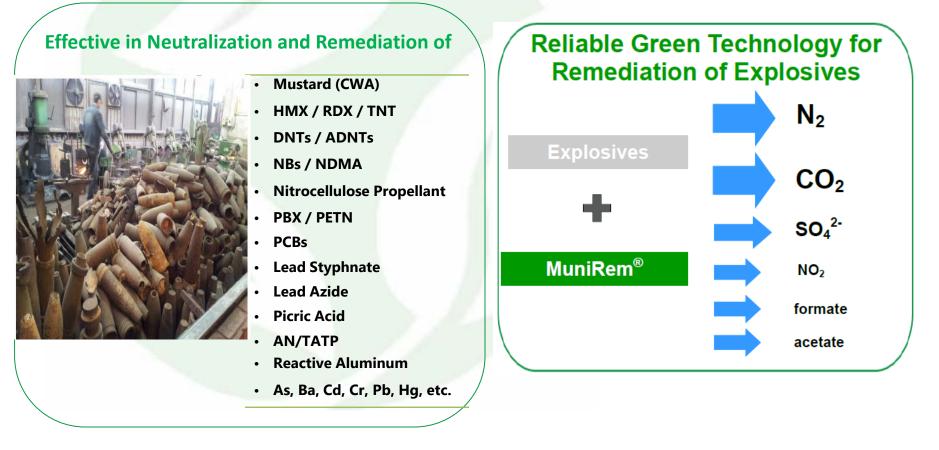
Multiple Evaluations at Bench & Pilot Scale

- University of Georgia
- Orbital ATK Laboratory, LCAAP
- Army Laboratory, Vicksburg, MS
- NDCEE/AEC Independent
 Evaluation, Pennsylvania
- Non-Stockpile, Edgewood, MD
- Indian Head (NAVFAC)
- SMS, Inc
- Israel

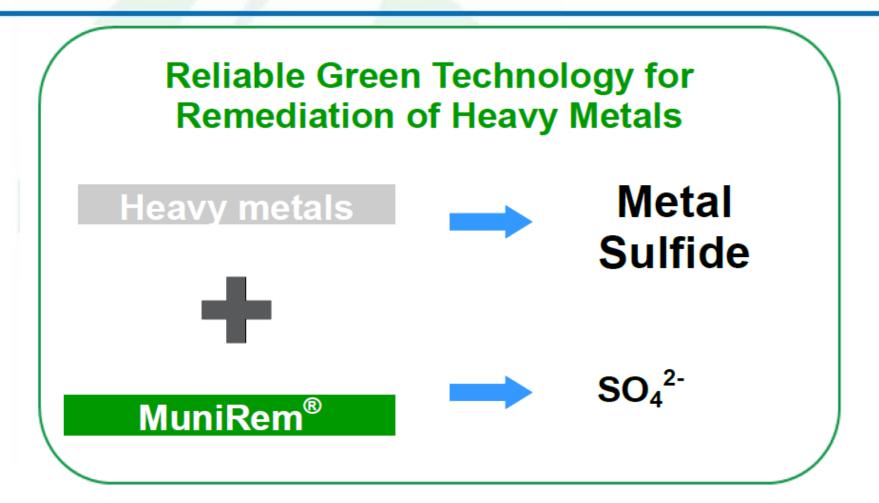


Reactions of MuniRem with Oxidized Organic Compounds and some Metals

MuniRem \rightarrow (IP) SO₂^{-*} \rightarrow SO₃²⁻ + S₂O₃²⁻ + SO₄²⁻ + other anions and cations ------ (1) Nitroorganic Explosives + 2SO₂^{-*} (sulfoxyl Free Radical) \rightarrow CO₂ + N₂/NO₂⁻ + H₂O + SO₄²⁻---- (2)

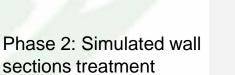

Organic Explosives \rightarrow (IP) Amine Products \rightarrow (EP) Formate + CO₂ + H₂O + Others

 $M^{2+} + 4S_2O_3^{2-} \rightarrow MS_2 + 3S^0 + 3SO_4^{2-}$ (4)


Types of Explosives Neutralized and End Products

The MuniRem reagent is versatile in its ability to neutralize a variety of energetics

Effect of MuniRem Reagent on Heavy Metals



Evaluation of MuniRem Reagent at US Army Laboratory

- Phase 1 Lead Styphnate (LS) and Trinitroresorcinol (TNR) Neutralization Efficacy Test
- Phase 2 Determination of
 Chemical Reagent
 Penetration into Wall
 Sections

Phase 1: Bench scale evaluation

Bench Scale Feasibility Tests US Army Laboratory

Initial 4,300 ppm TNR solution

MuniRem

ENVIRONMENTAL

Instant color change on contact with MuniRem reagent

Color change as a function of reagent dose

Results: TNR Concentration, Color, pH and Nitrite Formation (one of multiple test replicates)

Reaction variable: Dose of chemical reagent (neutralent)

Sample ID	Initial Conc'n (ppm)	Initial TNR Color	Initial Color (with Reagent)	Final Color	рН	Nitrite (ppm)	TNR Result
MCO	4,300	Yellow	NA			NA	ND
MC0.01b	4,300	yellow	crimson-purple	dark red	5.76	13.77	ND
MC01b	4,300	yellow	crimson-purple	dark red	7.76	NA	ND
MC1b	4,300	yellow	crimson-purple	dark red	8.69	0.29	ND
MC2b	4,300	yellow	crimson-purple	dark red	8.8	0.81	ND
MC3b	4,300	yellow	crimson-purple	orange	8.9	"_	ND
MC4b	4,300	yellow	crimson-purple	yellow-orange	8.85	26.67	ND

ND = No Detectable TNR; NA = Not Applicable

CHEMICAL NEUTRALIZATION OF BULK EXPLOSIVES ABANDONED ON DEMILITARIZATION EQUIPMENT

Camp Minden, Louisiana

Abandoned Bulk Explosive (H-6) Neutralization

- Melter/Flaker machine contained bulk H-6 (TNT, RDX, AL, Binder) explosives
- Large crystallized chunks of H-6 on equipment
- Wall surfaces and miscellaneous materials contaminated with explosives
- Lead paint chips mixed in with explosives

Small Footprint of MuniRem Solution Application

Explosives Neutralization Station Behind Building

MuniRem Solution Provided Safe Recovery of Crystallized Explosives

- Large H-6 chunks safely removed while spraying MuniRem solution
- Large explosive pieces transferred to neutralization reactor
- Neutralization of recovered explosives achieved rapidly in reaction tanks

Neutralization of Recovered Explosives

- 2,000 Lbs of H-6 explosives estimated as present on and in equipment
- >1,000 lbs destroyed in place by spraying concentrated MuniRem solution
- >900 lbs recovered and neutralized on-site in reactor with MuniRem solution
- Sludge and wastewater characterized as non-hazardous waste

ON-SITE DEMILITARIZATION OF UNDERWATER MUNITIONS

MuniRem supports Savannah Harbor Expansion Project (SHEP)

Neutralization of Civil War Munitions Recovered during Savannah River Harbor Expansion Program

Breaching of Recovered Projectiles Total projectiles breached and neutralized = 170

Breaching throughput = 12 projectiles per hour

MuniRem ENVIRONMENTAL

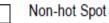
Neutralization of the Breached Munitions

- After 150 years explosives still well preserved
- Explosives washout using MuniRem solution
- 170 Munitions neutralized on site
- Fuzes safely removed and inerted
- Munitions certified by SUXOS as safe and handed to US Army Corps for preservation
- Characterization and disposal of non-hazardous waste

Field Scale In-situ Soil Remediation

Site Characteristics of Explosives in Soil

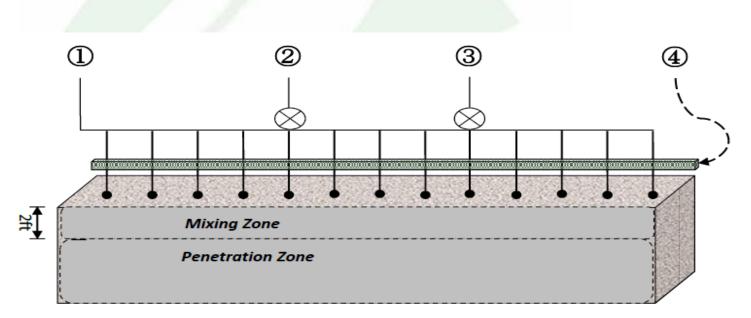
- Dimensions: **19 ft by 45 ft**
- Soil Type: Silty-Clay with rocks
- Targeted Treatment Depth: **Top 2 feet**
- TNT and other explosive compounds were released into the soils at Loading Pad
- Primary Explosive Compounds of Concern
 - TNT
 - RDX
 - HMX
- Secondary Explosive Compounds of Concern
 - 1,3,5-Trinitrobenzene
 - 2-Amino-4,6-dinitrotoluene
 - 4-Amino-2,6-dinitrotoluene



Schematic diagram of decision unit and sampling locations

	4 5 ft						
Å	0	0	0	0	0		
	0 0	0 0	0 0	0 0	0 0		
æ	0	0	0	0	0		
20 ft	0 0	0 🗖 0	0 0	0 ^ 0	0 0		
	0	0	0	0	0		
	0 0	0 0	0 0	0 0	0 0		

- Multi Increment Sample 0
- Discrete Sample



Incremental Sampling (ISM) for Baseline (Initial) Concentrations and Performance Monitoring

Schematic of MuniRem application in shallow soils

Step 1: Application of MuniRem on surface soil;

Step (2): Soil tilling equipment used to homogenize the surface soils and the mixture

of MuniRem chemicals (mixing zone);

Step ③: Application of water until soil becomes saturated in penetration zone;

Surface Broadcasting and Tilling-in MuniRem into the Soil

MuniRem ENVIRONMENTAL

Soil After Treament with MuniRem Reagent

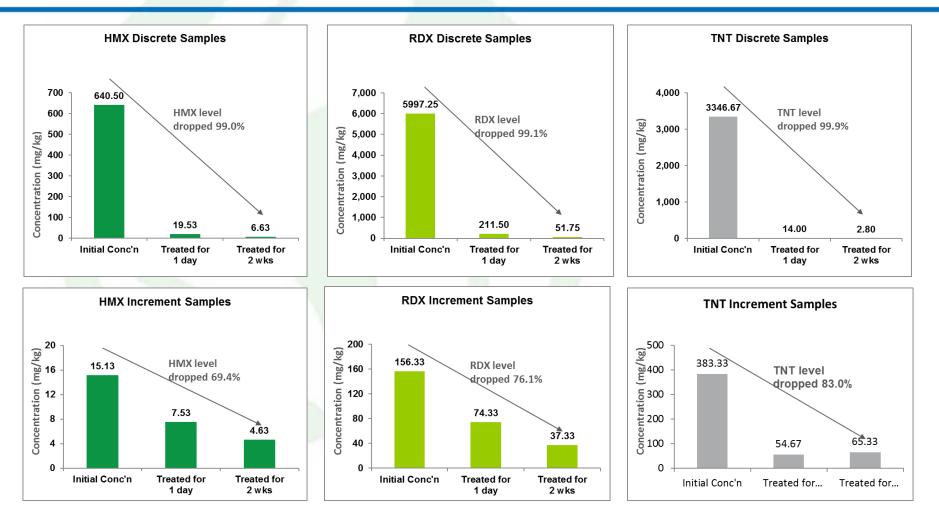
Left: MuniRem Mixed in with Soil but No Water Added Yet.

Right: MuniRem Mixed in with Soil, Water Added and Covered.

Sample Analysis

- Multi-Increment Samples EPA Method 8330B
- Discrete Samples (Hot Spots) EPA Method 8330A
- Transformation Products Bioremediation Consulting Inc. (Watertown, MA)
- > pH and TAL Metals
- Sampling Events: Baseline (Initial Concentrations), 24 hours after treatment and two weeks after treatment.
- Cleanup Goal Adopted: Residential Farmer (Unrestricted use) CUGs TNT: 211 mg/kg RDX: 115 mg/kg

Heterogeneous Distribution of Explosives


Dimensions of Area Treated with MuniRem[®] = 19 ft X 45 ft Multi Increment Samples = 3 from 21 Cells (i.e., 62 individual samples) Discrete Samples = 6

Non-Hot Spot					Hot Spot		
	D6		D5		D4	D3	
					D2	D1	
Walk Way							

Sample ID Note: D1 (Treated 0-6inch: T1; 0-1ft: TA); D2 (Baseline 0-6inch: T3; Treated 0-1ft: TD); D3 (Treated 0-1ft: TC); D4 (Baseline 0-6inch: T2; 0-1ft: TB); D5 (Treated 0-1ft: TE); D6 (Treated 0-1ft: TF)

MuniRem ENVIRONMENTAL

Results: 0, 24 h and 2 Weeks

Summary and Conclusion

- > MuniRem solution is versatile in its ability to neutralize a variety of energetics, heavy metals and chlorinated compounds (e.g., TCE, Mustard, etc).
- MuniRem solution is easily coupled with munitions breaching methods: waterjet cutting, milling, water saw cutting, steaming, shaped charge & cryogenic fracturing.
- MuniRem solution has supported the following types of projects:
 - ✓ Demilitarization

 - Recovery and neutralization of bulk explosives
 Decontamination of buildings and equipment
 Remediation of explosives contaminated soil and wastewater
- The end-product is a non-hazardous waste \checkmark