
2018 Insensitive Munitions & Energetic Materials Technology Symposium 
Portland, OR  

 
Slow Heating Testing Survey and Historical Events Review 

 
Ernest L. Baker 

 
Munitions Safety Information Analysis Center (NATO), Brussels, Belgium 

 
This report describes the results of an international review of the STANAG 4382 Slow 
Heating, Munitions Test Procedures, as well a review of heating rates and durations 
associated with actual fire events. The purpose of the slow heating test is to assess the 
reaction, if any, of munitions and weapon systems to a gradually increasing thermal 
environment.  To perform the review, MSIAC created a questionnaire in conjunction with 
the custodian of this STANAG, the United States, and sent it to subject matter experts 
including test centers in most of the AC/326 nations. The questionnaire questions deal 
with the test purpose, test procedure, heating rate, actual events, oven design, oven 
standardization, temperature preconditioning, energetics melting, reaction temperature, 
test item restraints, test item orientation, instrumentation, and number of tests.  This 
report provides an analysis of the answers received, summarizes best practice and 
provides some recommendations to potentially support an amendment of STANAG 
4382. These recommendations are being discussed within the NATO AC/326 SG/B 
Slow Heating Custodial Working Group (SH CWG). The working group has already 
reviewed the review results and is currently drafting updates to STANAG 4382 NATO 
documentation, which includes the technical content of the STANAG that is being 
migrated into a new AOP 4382. 

 
INTRODUCTION 

 
This report describes the results of an international review of the STANAG 4382 Slow Heating, 
Munitions Test Procedures, as well a review of heating rates and durations associated with 
actual fire events. The purpose of the slow heating test is to assess the reaction, if any, of 
munitions and weapon systems to a gradually increasing thermal environment.  To perform the 
review, MSIAC created a questionnaire in conjunction with the custodian of this STANAG, the 
United States, and sent it to subject matter experts including test centers in most of the AC/326 
nations. Moreover, an analysis of similar standards has been done in order to achieve more 
consistency in the recommendations.  From a NATO point of view, the requirements for the slow 
heating test are defined within three documents: STANAG 4439, STANAG 4382 and AOP-39.  
The test 7 (h) from the “UN – Manual of Tests and Criteria” specifies a slow cook-off test for the 
classification into hazard division 1.6.  The questionnaire questions deal with the test purpose, 
test procedure, heating rate, actual events, oven design, oven standardization, temperature 
preconditioning, energetics melting, reaction temperature, test item restraints, test item 
orientation, instrumentation, and number of tests.  This report provides an analysis of the 
answers received, summarizes best practice and provides some recommendations to potentially 
support an amendment of STANAG 4382. 
 
BACKGROUND 

 
In 2015, MSIAC carried out a review of STANAG 4496 related to the fragment impact test This 
review was managed the same way as this current one, and resulted in a list of 
recommendations that are currently being discussed in a custodian working group to update 
STANAG 4496.  Following the review of the bullet and fragment impact tests, MSIAC proposed 



to perform a similar review for the slow heating test, on behalf of the United States who is the 
custodian for this STANAG. 
 
REQUIREMENTS 
 
From a NATO point of view, the requirements for the slow heating test are defined within three 
documents: STANAG 4439 [1], STANAG 4382 [2] and AOP-39 [3].  The test 7 (h) from the “UN – 
Manual of Tests and Criteria” [4] specifies a slow cook-off test for the classification into hazard 
division 1.6. 
 
Analysis of the requirements 
 
The table hereafter compares the STANAG 4382, AOP-39, and the UN Manual of Tests and 
Criteria test 7(h) regarding the slow heating test: 
 
Table 1: Differences between the STANAG 4382, AOP-39 and UN orange book test 7(h) 

 STANAG 4382 ed.2 AOP 39 Ed. 3 UN 7 (h)
Alternative procedure Yes No

Number of tests 2 2
Item configuration Bare or logistical, as 

agreed by the national 
authority

Bare or 
logistical

Logistical

Test Procedure Yes Yes

Heating rate 3.3°C/hr 3.3°C/hr

Preconditioning Temperature 50°C for 8 hours or until 
equilibrium at 50°C

5°C below the predicted 
reaction temperature

Maximum Temperature 365°C
Reaction level acceptable Burning or no reaction Burning or no reaction

 
The main difference between the documents is related to the item configuration: 

 In logistical configuration for the UN document. This seems logical, as this document 
relates to the transport classification of the article; 

 Bare or packed, as agreed by national authority, in the STANAG, which seems logical 
as the national authority is able to define when a fire is more likely to impact the 
munitions during the life cycle. 

 
An alternative procedure is provided in the STANAG: if no analysis has been done, a rate of 
25°C per hour should be used as a default rate. With respect to temperatures specified, there are 
2 main differences: the preconditioning temperature is different (higher for the UN) and the UN 
defines a maximum temperature. The STANAG provides more details on the test procedure and 
includes a basic test set-up description.  Neither the STANAG nor the UN document provides a 
detailed example of test set-up. In addition, there are redundancies between the STANAG 4382 
and the AOP-39, especially in the observations and reports part. They should be avoided to allow 
these 2 documents to remain independent. Indeed, the AOP-39 is linked to the STANAG 4439, 
and it is not automatically updated when there is a change in one of the STANAGs that defines 
the test procedure, like the STANAG 4382. The 3rd edition of AOP-39 includes Appendices which 
provided intermediate updates of all the IM full scale tests not referenced from STANAG 4382 
and the contents of the Slow Heating appendix needs to be included in the review of STANAG 
4382.   
 
MSIAC was requested to support AC/326 SG/B, which was agreed by the MSIAC SC, to review 
all these documents to remove redundancies or contradictions and to clarify where the 
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Table 2: List of facilities and nations who replied to the survey 

 
 

TEST PURPOSE 
 
The survey participants were asked about the purpose of the test. They were asked if the test 
purpose was to provide an extreme heat rate different from the fast cook-off test, if the test 
purpose is to characterize the munition being tested, and/or if the test purpose is to simulate a 
real life accident scenario. Additionally, they were asked to comment as to the reason that the 
slow heating test was developed. The majority agreed with all three statements, but a larger 
number agreed that the test purpose was to characterize the munition being tested. Figure 2 
presents circle graphs of the responses. 

Organization Country Status
DOS Australia Government

DRDC Valcartier Canada Government
GD-OTS Canada Canada Private

AC/326 Czech Republic Government
Test Firing Center Finland Government

AC/326 – DGA France Government
NEXTER Munitions France Private

Airbus Safran Launchers France Private
WTD91 Germany Government

MBDA Systems Germany Private
MBDA Systems Germany Private

Centre of Excellence Weapons and 
Ammunition

Netherlands Government

AC/326 Norway Government
AC/326 South Africa Government

Bofors Test Center Sweden Private
QinetiQ United Kingdom Private

BAE Systems United Kingdom Private
US Army IM Board United States of America Government
NSWC Dahlgren D United States of America Government

Redstone (Army) United States of America Government
Eglin Air Force United States of America Government
Eglin Air Force United States of America Government

AFLCMC/EBDP United States of America Government
NAWC China Lake United States of America Government
NSWC Dahlgren D United States of America Government
NSWC Dahlgren D United States of America Government
NAWC China Lake United States of America Government
NAWC China Lake United States of America Government

DDESB United States of America Government
YPG ATC United States of America Government

NAWC China Lake United States of America Government
NSWC Crane United States of America Government
NSWC Crane United States of America Government
NSWC Crane United States of America Government
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what is not a realistic heating rate in real world incidents. A suggested heating rate 
with some supporting data is 45-50 degrees F per hour. 

• The heating rate should be changed to a rate that is consistent with reaching cook-off 
temperature within a reasonable time for a fire to be extinguished. If the worst case is 
24 hours, then the heating rate should be determined based on the item reaching 
cook-off temperature in 24 hours. 

 
Should be worst case and most likely: 

• The problem with the current rate is that we don’t know if it will produce the worst 
reaction. No, it’s not “real world”. But, the real world rate for any munition will be highly 
dependent on the life cycle of that item. There should probably be at least two rates – 
a worst case rate and a most likely rate (one set by the specific program depending 
on the life cycle assessment). 

 
Why This Rate? 
 
The received comments are: 

• Maintain compatibility and comparability with previous test data. 
• We should be assessing for IM compliance over a range of slow rates, rather than 

just at a single point. Having a single point may enable developers to focus on 
passing just that single requirement, whereas passing over a range of rates might 
make them more focused on a better IM solution. 

• A suggested heating rate with some supporting data is 45-50 degrees F per hour. 
• With modern day fire fighting equipment aboard ships, fires should be completely 

extinguished in less than xx-hours. I do not know what that reasonable timeframe is 
but we should be able to determine it from the experts. The example I cited above 
was for a 24-hour fire. Using a cook-off temperature of 180-Deg C, starting at 50-Deg 
C, 130 divided by 24 hours equals 5.5-Deg C per hour.  

• Various energetic materials will have their worst case reaction at different rates. There 
will not be one rate value that will invoke the worst case reaction in all or most articles 
or even components. Retaining rates of 3, 4, 5° C etc. will only be valuable for 
scientific research. A real fire will be extinguished well before any reaction occurs 
(and won’t last for two days). 

 
Should Size be a Consideration? 
 
The received comments are: 
 

• The size of the item to be tested is not foreseeable. It is as big as it is. 
• The rate should be based on what can be expected in a real world application. 
• It might be necessary/prudent to tailor the heating rate(s) to item size in order to 

assess the effectiveness of reaction mitigation features across a range of credible 
stressing conditions (see previous comment).  

• We already have an artificial rate…don’t make it worse by adjusting the rate based on 
size. How does that relate to anything real?  

• We should remain standardized for all, rather than variable. 
• Worst case should be used, whatever that rate is. 

 
OVEN DESIGN 
 
The survey participants were asked about test oven design information, including oven 
construction material and thickness, the oven heating system, the oven airflow and oven 
photographs. They were also asked about oven design issues that affect the testing and potential 
test outcome, including the item spacing to the oven wall, the observed temperature 
homogeneity while testing and about protection for energetic material exuded out of the item.  
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with an outer box made from the same duct board allowing 3 inches airspace 
between the inner and outer to allow for circulation. 

• Standard Stone Wool inside steel grid. 
• 1/16” aluminium walls with a 1” aluminium angle skeleton to produce a box which is 

then covered with high temperature insulation as needed and then covered by a clear 
tarp to protect the insulation from dew or rain. 

• Double-wall construction with inner wall of 1-in thick fiberglass duct-board and outer 
wall of 2-in thick rigid polystyrene foam. 

• Usually steel sheet, appx 1/16” (China Lake) or appr 1/8” (Eglin) 
• Bespoke oven created for each individual test scenario. 
• Mild steel with insulating material sandwich between inner and outer layer. 
• Double-wall design (i.e. inner chamber/outer chamber). Inner chamber constructed 

from 1-inch thick duct board. Outer chamber constructed from 1 ½ inch thick foam 
insulation. 

• We use reinforcement mats for the framework of the oven and 200 mm thick mineral 
wool for insulation. The oven is protected from wind and rain with polyethylene foil. 

• Heat resistant wool. Thickness is very much dependent on the outer conditions, i.e. 
thicker insulation in the winter time than in the summer time. 

• Oven material and thickness 1mm steel plate on light frames, rockwool insulation 
• Thin steel sheet metal, see NAWCWD 473000D for detail info 
• Ceramic, approx. 3 inches.  

 
Heating Systems and Airflow 
 
There appears to be much less variation in the heating systems, with two main approaches: 
internal heat source convection oven, or external heat source convection oven both using electric 
heating elements.  Almost all responses indicated that they used forced airflow in order to try and 
achieve temperature homogeneity.  So the primary difference between the two heating systems 
approaches is the location of the heat source: internal for convection ovens and external for heat 
source convention ovens which employ a pipe to transfer the heat.…are that for the internal heat 
source convection ovens, the electric heating elements are within the oven, and for the external 
heat source convection oven, the electric heating elements are in a separate unit from the oven 
and heated air is piped into the oven.   
Below are some associated comments from the survey: 

• Heating system is like large “fan-oven”. 
• Convection oven heated by four 120 Volt, 500W strip heaters protected by thin 

aluminium witness plates. The heaters may me reusable from test to test. 
• Electrical resistances. 
• One or more heating elements off the ground and away from the item under test 

within the oven system and fan assisted for air circulation. 
• ( 4) 500 Watt heating elements. 
• Hielkema Air Heaters. 
• Typically 3 each tubular heaters controlled by a Watlow control device that regulates 

the time that the heaters receive voltage, thereby, providing heat to the box. 
 
Wall Distance 
 
All survey responders indicated that they maintained the distance between the test item and the 
oven wall to be >200mm per the STANAG requirement. 
 
Temperature homogeneity 
 
The STANAG lists a requirement for temperature homogeneity to be within 5°C.  Most 
respondents indicated that this requirement was not difficult to meet, except for large test items.   
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OVEN DESIGN ISSUES 
 
The survey asked that any issues with the oven designs be raised.  The primary topics discussed 
by the respondents were that the oven should be: 1) very well Thermally insulated and 2) 
designed so as not to significantly confine the reaction, fragmentation or blast. 
 
Thermal issues 
 
Comments associated with thermal insulation are: 

• Forced air flow ovens have resulted in varying responses from the same munition.  It 
is believed the air inlet is creating localized hotspots. 

• The convective oven wall is much hotter than the oven air so when fill contacts it 
ignites.  This not only causes a slightly earlier reaction but ignites the remaining fill in 
the case in a location that may not be realistic. 

• We use heat resistant wool as construction material and place most metal parts 
(heating elements, fans etc.) beneath the test item. 

• The ultimate SCO oven material would be a heat resistant, light colored (better “in 
oven camera” coverage) affordable, light weight / density and environmental friendly 
plate. 

• Air flow in our test set up does not have high velocity. On my opinion that does not 
have significant influence to test item and test result. 

• Several different cameras that look through a window in the oven and the most 
difficult problem is determining how to keep the camera cool to keep the internal view 
camera alive. I have had successes and failures, but I haven’t found the perfect 
answer for that yet. 

 
Confinement and Fragment Flight Issues 
 
Comments associated with confinement and fragment flight are: 

• Heavy wall construction can influence the flight of fragments.   
• I feel that the greatest issue is ensuring that the design of the oven truly provides the 

minimum confinement that can be achieved practically, in order to minimize 
suppressive effects on the ejection of debris and attenuation/focusing of blast 

• Oven walls should be constructed of foam/fiber panels with minimal structural integrity 
to lessen their effect of slowing fragment projections 

• Even if the confinement exacerbates oven throw distance we do not believe it throws 
test item parts farther.  

• Confinement will always be an issue, but items can be compared using the same test 
setup and a “calibration” shot can be used to measure/determine the full detonation 
properties of the test item. 

• Oven design should have minimal effect on the projection of fragments from the oven. 
 

OVEN STANDARDIZATION 
 
The survey asked whether the oven design should be standardized. The results split fairly evenly 
as seen in Figure 19. The problem with standardizing the design is that different munition types 
require different considerations. Differing sizes of munitions required different sized ovens. 
Rocket motors will need to be restrained to prevent flight in case of a strong propulsive reaction. 
Also, munitions tested inside a shipping container or canister can affect the oven design. One 
thing to consider is the use of the oven itself as a surrogate shipping container or canister. This 
could avoid duplicate confinement. Another point to discuss will be the consideration of the effect 
of heating bands on the reaction if material is extruded out of the test item. Heating bands create 
localised hot surfaces which are eliminated if forced air is used. So, guidance could be provided 
to use forced air if energetic extrusion is anticipated. External conditions affect the design as well: 
if it’s very cold outside additional insulation will be needed. Recommendations could be 
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Number of Thermocouples 
 
The STANAG is somewhat inconsistent in that it states “A minimum of four thermocouples 
should be used to be sure that the oven is uniformly heated and to monitor the surface 
temperature of the test item.”, but goes on to state “In general, there should be at least two 
thermocouples mounted on opposite surfaces of the test item, one each in the air space near the 
air inlet and exit, and one each in the air space on opposite sides of the round (see Figure 1).”, 
implying at least 6 thermocouples should be used. The number of thermocouples used by test 
facilities appears to vary greatly from 4 to 100.   
Below are some of the responses: 

• 4 as per the STANAG. 
• 6 (minimum) installed in accordance with the STANAG to assess compliance with the 

heating conditions and provide an indication of reaction of the test item.  
• Between 8 – 16: near the oven wall, near the item, and when possible inside the item 

(charging tubes). 
• Typically fifteen. This includes the typical air temp at various points near the item, 

oven wall temp, skin temp in several locations including just outside the oven wall, 
and one or two internal to the item to detect self heating.  

• Ten to thirty thermocouples are typical. Some dictating factors include, size of the 
oven (ensure temperature homogeneity), specific test information about a location, 
efficiency of heat transfer, STANAG requirement, engineering considerations, etc. We 
are equipped to use as many as 100 thermocouples. 

 
VISUALIZATION ISSUES 
 
A number of respondents described visualization issues: 

• Occasionally an internal camera will fail or be obscured by fill exudate prior to 
initiation.  This will compromise diagnostics. 

• A minimum of four cameras are used. Two are fielded to view the test store inside the 
oven and two are deployed to view the outside of the oven. 

• We use two cameras outside and one camera inside the oven to record the reaction 
of the munition. 

• Cameras are used external to the event. Disposable internal cameras are often used, 
as many as four in a single test. 

• We have a camera outside oven, shooting through window to inside oven, to the test 
item. It has been very useful and has given information during test and just before 
reaction. 

• The window allows the ability to confirm reaction of the item but our current set-up 
does not allow for visualization of the test item reaction, since we prefer using a 
general surveillance camera. A system using bigger window, mirrors, and high speed 
camera is possible. Trigger is an issue with some instruments, although we used 
bridge-wire to acquire data (ex.: pressure) at a higher speed rate during reaction. 

 
SUMMARY OF RECOMMENDATIONS 
 
This is a summary of the recommendations, the explanations have been provided in the core of 
this document: 

• Develop a group consensus as to the intent of the test and document it. 
• Query all of the MSIAC nations to provide information on actual event durations and 

rates. 
• Based on consensus test intent and supporting data, develop a consensus as to 

changing rate or leaving the rate unchanged. 
• Clarify the minimum number of required thermocouples and thermocouple 

positioning. 



• 
• 

• 
• 
• 

ACTUAL
 
There w
actual slo
Heating 
review o
from the
threats. A
report se
report “A
many ex
result, fir
minimum
have occ
fires that
day fires
temperat
summary
assessm
as 25°C/
thermal 
which in
similar. 
 

Figure 22
 

CONCLU
 
This stu
recomme

Observa
Develop 
scales of
Characte
Provide a
Remove
between
process)
 

L EVENTS 

were 32 resp
ow heating 
Custodial W

of actual eve
e MSIAC sa
A search of 
earch resulte
Assessing T
xamples of 
re modelling

m heating ra
curred over 
t have occu

s appear to 
ture rise rat
y of this a

ment conclud
/hr.  Lower r
modelling.  
cluded sup

2: Thermal t

USIONS 

dy and the
endations to

ations of eve
and provid

f test items. 
erize the hea
a best pract
 redundanc

n the STANA
). 

HEATING R

ponses that
incidents.  A
Working Gr
ent heating 
afety databa

the MSIAC
ed in a large
hermal Thre
fire duratio

g results of 
tes.  The va
multiple day

urred seque
be complete
tes remains
assessment
de that actu
rates appea
Dr. David H
porting fire 

threat categ

e associated
o further im

ents inside th
de a best p

ating equipm
tices examp
cies or contr
AG 4382 an

RATES 

t the individ
As a result, 
roup (SH C
rates and d

ase regardin
C MAD-X acc
e number of
eats” [33] th
ns and ver
actual even

ast majority 
ys, but it ne

entially.  The
e in much s
s the same 
t is presen
al credible a

ar very difficu
Hubble from
modelling [

gorization. 

d historical 
mprove the 

he oven. 
ractice oven

ment and pe
ple test conf
radictions a
nd the AOP

duals had n
during the N

CWG) meet
urations an
ng real-life s
cident datab
f references
hat was pub
ry few actua
nts are requ
of fire event

eeds to be re
e individual 

shorter times
as that ass

nted in figu
adjacent com
ult to justify 

m NSWCDD
[34].  The r

events ass
STANAG 4

n design ex

erform calib
iguration. 

and clarify w
P-39 (AC/32

no informati
NATO AC/3
ting, MSIAC
d share any
slow heatin
base provid
s [5-32], inclu
lished in 20
al temperat
uired in orde
ts are comp
ecognized th
fire events

s.  The sum
sessed in th
ure 22.  T
mpartment f
based on a

D, USA rece
results and 

sessment w
4382. Thes

xamples for

ration testin

where the in
6 SG/B has

ion on the 
326 SG10-1
C was requ
y available h
ng events a
ed no applic
uding the pr

003. The rev
ure rate me
er to estima
plete within a
hat these ev

s associated
mmary inferre
he 2003 MS

This review,
fires could p

actual fire ev
ently comple
conclusions

was an effic
se recomme

r different ty

ng. 

nformation s
s already be

duration or
1 April 2017

uested to co
historical inf
nd potentia
cable inform
revious 200
view results 
easurement

ate credible 
a day.  Som
vents are al
d with these
ed actual fir
SIAC report
, and the 
produce rate
vents and as
eted a simil
s appear to

cient way to
endations a

ypes and 

should sit 
egun this 

r rates of 
7 /B Slow 
onduct a 
formation 
l thermal 

mation.  A 
3 MSIAC 
provided 

ts.  As a 
actual or 

me events 
l multiple 

e multiple 
re events 
t [33].  A 
previous 

es as low 
ssociated 
lar study, 
o be very 

 

o identify 
are being 



discussed with AC/326 SG/B who has already chartered a working group to review and update 
the STANAG. The working group has already reviewed the survey results. According to the new 
requirements in the NATO documentation, the technical content of the STANAG will be migrated 
into an AOP. 
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