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There is currently no agreed standard methodology for assessing the suitability of 
explosives for gun launch or for the determination of acceptance criteria for explosive fill 
defects.  Laboratory setback activator testing has been used as an assessment tool for 
investigating the suitability of explosives for gun launch.  Unfortunately, laboratory 
setback activator testing is not standardized and large variations exist in activator 
design, function and results between different laboratories.  However, it is the only 
currently available tool for assessing an explosives safety and suitability to launch-
induced setback forces.  In laboratory setback activator tests, ignitions are observed at  
setback loadings that are much higher than produced in actual gun launched projectiles.  
This may be related to the defects in actual projectiles, which appear to be very different 
than the laboratory tests. 

 
 
INTRODUCTION 

 
A major safety concerns for energetic materials present in gun launched munitions is the 
exposure to severe set-back forces which develop as the shell is accelerated.  Table I presents a 
listing of typical projectile accelerations associated with different gun launches [1,2].  Under these 
conditions, energetic materials have been observed to occasionally react prematurely. The term 
in-bore premature is used for the explosion of a munition whilst it is still travelling down the barrel. 
 
This is not a new phenomenon and a number of nations have developed laboratory setback 
actuator testing that can be used to understand ignition mechanisms for energetic material when 
exposed to an acceleration environment. However, these capabilities appear to be used mainly 
for research purposes and there is little evidence that they are mandated as part of a nation’s 
formal qualification assessment process.  None are included in NATO Standards on qualification 
of energetic materials. 
 

TABLE I. PROJECTILE MAXIMUM ACCELERATIONS AND PRESSURES 
Gun System Max Projectile Acceleration 

Range (kGs) 
Max Chamber Pressure 

Range (MPa) 
Artillery 4-30 70-500 
Mortars 1-13 20-140 

Tank Guns 25-120 200-830 
Medium Caliber 50-200 140-1400 

 
 
MUNITION SAFETY ASSESSMENT PROCESS 
 
The development of explosives requires a rigorous regimen of tests, both small-scale, and large-
scale, before explosives can be judged safe and suitable for service use.  NATO nations have 
agreed that all energetic materials be qualified in accordance with NATO STANAG 4170, with 
guidance provided in the associated AOP-7. Final or Type qualification is the process by which 
the safety and suitably of energetic material for its intended application and role are assessed. A 
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There is little information on the occurrence of larger perturbations and how often this occurs.  
The investigation and effect of these larger potential acceleration perturbations on projectile 
explosive fills has received surprising little investigation. 
 
 
DEFECTS 
 
Defects are important because they act as sites for stress strain concentrations which can lead to 
localised heating, hot spot formation, and ignition. A review of literature, accident results and 
attributed potential causes in the MSIAC database indicates that gun launch candidate high 
explosives are unlikely to react without voids or interface defects to allow shear or adiabatic 
heating to drive the formation of hot spots [12,13,14,15]. To give an idea of the sort of defects 
that can be observed in artillery shell, a listing is given. It should be noted that where multiple 
defects occur, they may potentially act together. 

 
Voids 
  
 
Voids of 0.1-10 mm in diameter are common in cast cure and melt pour explosive fillings. Void 
collapse can cause a critical hot-spot to occur by viscoplastic work as the material around the 
void is rapidly deformed and adiabatic heating occurs as the gas inside the void is compressed. 
Evidence from set-back simulation work indicates that a combination of both processes may be 
required to develop a critical hot-spot.  Analysis of voids requires a statistical treatment, with 
defined limits and rejection criteria, because of their role in determining probability of an ignition 
on gun launch. It is known that the more defects present the greater the probability of critical 
defect.  A critical defect is defined as one which forms a hot spot and causes ignition. 
 
Cracks 
 
These are often observed in explosive fillings and can be caused by a number of factors. 
Shrinkage during processing, ageing or environmental stresses, rough handling etc. Cracks can 
lead to ignition through frictional processes or by generating site for adiabatic gas heating during 
cavity collapse. Figure 3 presents a photograph of a cross sectioned 155mm Comp-B cast 
projectile with observable cracks in the explosive fill. 

 
Porosity 
 
Any explosive charges can exhibit regions of porosity due to poor mixing or via chemical reaction 
or incompatibility. Formulations which do not meet the specification may also have increased 
porosities due to insufficient binder to filler ration. If present these porosities can act as sites of 
localised failure giving rise to viscoplastic deformation or adiabatic heating. Figure 5 presents a 
photograph of a cross sectioned 155mm Comp-B cast projectile with observable porosity in the 
explosive fill. 
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cavities are almost the only configurations used.  For these configurations, three ignition sources 
appear to dominate: explosive extrusion and pinching, adiabatic air heating, and shear. 

 
Explosive Extrusion and Pinching 
  
This type of ignition is very common in earlier setback actuator tests and is sometimes observed 
in later testing as well.  It consists of the unintentional ignition associated with sample holding 
geometry and materials. Due to fit configuration tolerance typically between a loading piston and 
cylinder, explosive can be extruded into the associated small gaps during loading and then 
subsequently pinched to cause ignition [23,24].  For pristine samples without introduced defects 
or gaps, it is believed that this is the dominant observed ignition phenomena. Various 
approaches have been used in order to eliminate or minimize the occurrences.  The approaches 
include higher precision hardware with tighter tolerances [23, 6] or sealing the cylindrical surface 
by using plastic materials on the piston surface [25, 26] 
 
Adiabatic Air Heating 
 
This ignition mechanism is due to the air compression in introduced gaps or cavities.  For smaller 
gaps and voids, it requires small (less then 50µm) energetic particles to be present [27].  This 
appears dominant for cast cure explosives, where energetic particles are ejected into the sample 
cavity as a result of the initial impact. Whether or not a collapsing defect ignites the sample 
depends on its size and rate at which it is collapsed, the ease of deformation, the condition of the 
cavity surface, and the filler particle size. The ability of a cavity surface to entrap or bind energetic 
crystals during its collapse, small crystal size, and a non-cracking binder all contribute to 
insensitiveness. The reaction of coarse energetic crystals ejected from the surface during the 
collapse of an air-filled cavity along with adiabatic heating from entrapped air appears to be the 
mechanism for deformable explosives [3]. This has been in part verified through vacuum 
experiments. The ignition threshold increases with evacuation of air from the cavity, which 
reduces heating but also back pressure which is required to achieve high burning rates. 
Additionally, coating of the cavity surfaces with binder materials has been shown to inhibit 
ignition. Internal cavities have been shown to ignite easier and produce much more violent 
responses than surface cavities of the same volume [28].  Possible reasons for this observation 
are reduced air leakage, increased pressurization durations and lack of heat transfer 
mechanisms. 

 
Shear 
 
This mechanism is associated with the mechanical deformation work causing heating, as well as 
the associated material damage and creation of fine debris.  Strong hard explosives, such as 
most melt pour formulations, are heated by shear deformation.  Fracture and mechanical failure 
of the sample creates debris, as well as additional surface area for increasing the reaction 
violence. For melt pour explosives, this mechanism appears to be coupled with adiabatic heating 
to cause ignition [3].  

 
Friction 
 
There is little information in the literature and it appears that only limited frictional laboratory 
setback actuator testing has been conducted. Taylor [12] demonstrated frictional ignitions in 
laboratory setback activator testing when sufficient large grit was present. However, no ignition 
were observed using the grit in standard primer paints.  Frictional ignitions were produced only 
when high-melting-point grit was present at the sliding surface [12]. Bélanger [28] noted that the 
friction reaction depends upon (1) the explosive type and (2) the amount of friction which varies 
with surface roughness and the presence of hard inclusions. Such friction is found negligible on 
smooth surfaces for all explosives tested, except when hard inclusions are present. With hard 
inclusions, Composition A-3, CX-84A and Comp-B are highly sensitized, but TNT is not. 



 
Accelerating Affects 
 
Adiabatic compression model calculations predict the highest possible values of the explosive-air 
interface temperature. However, such calculations indicate that sufficiently high temperatures can 
only be produced at compression ratios higher than many at which ignition is observed [22]. In 
addition, at finite pressurization rates even lower temperatures are predicted and in no case can 
the experimentally observed ignitions be accounted for. The situation is further aggravated by the 
fact that air leakage in laboratory setback activators can render the environment even less 
hostile.  Among the real world effects that may come into play are: enhanced energy transport 
due to turbulent air flow, rapid pressurization due increased air mass as a result of convergent 
flow, convergent air flow near the end of defect closures, dieseling, alternate gas, large exposed 
surface crystals, multiple defects and precompression [27,12]. 

 
 

IGNITION SENSITIVENESS VS. EXPLOSIVENESS 
 
The susceptibility of explosives to premature ignition is often assessed by comparing their ignition 
thresholds in laboratory setback actuator tests to those of Comp-B and TNT. However, the issue 
is complicated by the fact that the explosiveness of the burning response is also a factor.  
Explosiveness has been defined as the reaction violence that is normally characterized by the 
degree of damage that occurs to the test fixture. It has been speculated that the infrequency of 
reported prematures with TNT may be due to its relatively slow burning response rather than a 
lower ignitability. This would lead to the premature explosion occurring down range rather than in 
the gun tube for which there is anecdotal evidence. If this is the case, the sensitiveness 
assessment is more difficult as both ignitability and explosiveness must be considered. There is a 
noted trend in results to exhibit some tendency toward an increase in reaction violence with 
decreasing ignition sensitiveness [28]. 
 
There are significant discrepancies in the literature related to the ignitability and explosiveness of 
TNT compared to Composition-B. Taylor [12] conducted planar gap tests that show TNT is 
somewhat more ignitable than comp-B.  Sandusky [3] noted that unlike TNT, the initial sealing of 
cavities made Comp-B much more ignitable. Sandusky [3] also noted that Comp-B exhibits one 
of the highest sensitiveness levels and responds violently. Starkenberg [27] states that the data 
for TNT provide no reason to believe that it is less sensitive to ignition than Comp-B.  For friction 
ignition studies, Bélanger [28] found that Comp-B was highly sensitized by the addition of hard 
inclusion, whereas TNT was not. Meyers [29] had less consistency, but the explosive responses 
showed extensive burning for TNT, and explosions for Comp-B. 
 
Comp A3 Type II was the least sensitive explosive tested by Starkenberg [27]. It exhibited a 
moderately high level of response violence. LX-14 exhibited a sensitiveness intermediate 
between those of Comp-B and Comp A-3 Type 11and reacts very violently. PBXW-113, was by 
far the most sensitive. Late ignitions were observed in LX-14 that occurred on the second strike 
of the driving.  Sandusky [3] noted that ignition of cast-cure samples was always delayed with 
respect to cavity collapse, often several milliseconds after maximum pressure.  He observed 
delays as long as 24 ms when the driver pressure was fully vented.  He noted extensive burning 
for TNT, explosions for Comp-B, mild reactions for cast-cure PBXs, and little decomposition for 
TATB-based explosives. 

 
 

FORMULATION FOR REDUCED PREMATURES 
 
The path toward more premature-resistant explosives is not clear. Velicky has suggested that an 
explosive's mechanical strength should be increased to reduce the probability of collapse of 
casting flaws [30]. However, it seems likely that this will have little effect on cavities large enough 



to present a problem since the launch acceleration environment appears to produce stresses 
well above those required to collapse larger cavities. Because of the importance of the gas 
pressurization rate, increasing mechanical strength might even have a negative effect. Delaying 
cavity collapse until higher stress levels have been reached could increase the pressurization 
rate. Cavities in a softened material, meanwhile, might collapse slowly during the very early 
portion of launch, thus resisting ignition. On the other hand, they might better trap hot air, thus 
promoting ignition. In the latter case, the low ignited surface area can be expected to yield low 
initial reaction rates which may sufficiently delay any violent response. Approaches which reduce 
the incidence of flaws in explosive fills, reduce the ignitability of the explosive or retard the 
burning response of the explosive are, of course, desirable. Because of the complexity of the 
issues involved, characterization of explosives through testing is the only available approach to 
discovering premature resistant formulations [29]. 

 
 

CONCLUSIONS AND DISCUSSION 
 
Observations indicate that actual gun launch setback ignitions cannot be clearly correlated with 
the results of ignition sensitiveness results from laboratory setback activator tests. The laboratory 
setback activator tests normally indicate ignitions at much higher setback than are believed to be 
produced in actual gun launched projectiles.  Additionally, the defects in actual projectiles appear 
to be very different than the laboratory tests.  Both ignitability and explosiveness should be 
considered in assessing an explosive's resistance to launch-induced explosion. For this reason, 
some explosives are not rejected on the basis of exhibiting high ignition sensitiveness in the 
activators unless the reaction violence levels are also high. In the controversy between brittle and 
soft explosives, ignition sensitiveness results are biased towards the strong brittle materials, often 
observed for melt pour explosives. In spite of all this, the activator, remains the currently only 
available tool for assessing an explosives resistance to launch-induced premature explosions 
and it is recommended that the munitions community should work toward developing an 
understanding of the ignition phenomena and laboratory setback activator technology as part of a 
process development for defining physically based acceptable defect criteria.  
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