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Investigation of the Hugh James Criteria Using Estimated Parameters 

Justin C. Sweitzer1*, Nicholas R. Peterson2, and  Nausheen Al-Shehab3 

ABSTRACT: 

The ability to predict the response of an energetic device to IM stimulus is one of the major focus areas 

within the IM community.  Several methodologies have been proposed and used for this purpose, 

including direct calculation via reactive burn models, analytic criteria such as Held’s V2D criteria, and semi-

empirical techniques such as the Hugh James criteria.  A method was recently presented that leverages 

the James criteria with estimated parameters combined with the ALE3D hydrocode and statistical models 

to predict reaction threshold.  In this paper, this methodology is examined in detail by applying it to a well-

characterized explosive.  

 

The basis for the methodology is in threshold statistics, as detailed by Hrousis, et al.  Energetic materials 

are often characterized in terms of ’50% go/no-go’ thresholds, underscoring the inherent variability in 

material response.  These concepts were initially applied to an explosive for which James parameters were 

not readily available (LX-14), but a large body of Fragment Impact (FI) test data was.  Values for the missing 

parameters were ‘guessed’ by substituting parameters from a similar explosive.  The initiation threshold 

was developed by applying the ‘guess’ parameters to the existing data, and extrapolated forward through 

a Binary Logistic Regression (BLR) model. 

 

To test this methodology, the UF-TATB parameters from Hrousis, et al, were used in place of test data.  

The mean and variance of the ignition threshold were calculated using the QMU method and applied to a 

BLR model.  Model variations were then simulated to test the predictive capability of the method.  
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Introduction 

Computational prediction of munition response to impact stimulus is routinely performed via hydrocode 

analysis.  The material models used to simulate energetic materials are usually either a reactive flow 

model, such as Tarver-Cochran Ignition & Growth Reactive Burn (IGRB) or History Variable Reactive Burn 

(HVRB) or an inert material.  Reactive models are capable of directly predicting the material response, but 

carry some disadvantages, such as increased computational load and binary response.  Simulations using 

this type of model are capable of predicting detonation or non-detonation, but do not provide an estimate 

of distance from initiation threshold. 

When instead an inert material model is used, prediction of initiation behavior relies on an external 

analysis.  Multiple initiation criteria are used for this purpose, such as the Held’s1–3 V2D for shaped charge 

jets, Walker & Wasley’s4 P2τ, or the James criteria5 combined specific kinetic energy  and energy fluence.  

These approaches are capable of producing excellent agreement with experiment, provided a suitable 

threshold value has been provided for the explosive under investigation.  Previously, a method for 

predicting energetic response to impact stimulus has been presented6 that relies on the James method, 

but uses the outcome of previous tests7 instead of compiled critical values. 

In the previous study, the critical values of James’ parameters were not located for LX-14, but several 

Fragment Impact (FI) tests had already been conducted.  These values were substituted arbitrarily for 

those of another explosive, and a BLR model was used for threshold to reaction.  The justification for doing 

so was that within the geometry and impact conditions investigated, the calculated result should at least 

trend in a physically meaningful way.  At that time, no further justification was offered for the approach.  

This paper investigates the idea further, and provides a validation study for the previous effort.     

James Criteria and QMU Threshold 

The James criteria has roots8 in the critical energy criteria of Walker & Wasley4.  James extended5 the 

critical energy concept to include both the energy fluence across a unit area, Ec, and a specific kinetic 

energy, Σc.  The resulting initiation threshold is hyperbolic in E-Σ space, in accordance with the relationship 

1 =  
𝐸𝑐

𝐸
+

Σ𝑐

Σ
(1) 

The concept was further extended by Hrousis, et al9 to develop a single parameter, J, as a combination of 

the two critical parameters.  Additionally, a functional form of energy fluence was suggested that is well-

suited to hydrocode calculation.  Their relationships are 

𝐽 =  
𝐸𝑐

𝐸
+

Σ𝑐

Σ
, 𝐸 =  ∫ 𝑃 𝑢 𝑑𝑡 , Σ =  

𝑢2

2
(2) 

In the above equation, P represents pressure and u is particle velocity.  In this form, the value of Jmax = 1 

corresponds to marginal initiation, while numbers less than 1 or greater than 1 imply non-initiation or 

initiation with margin, respectively.  By carrying forward the measured uncertainty in experimental results 
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and assuming that Jcritical is normally distributed with a mean of 1.0, they developed an engineering sense 

of margin from initiation.   

The p-values associated with the computed value of Jmax can then be viewed as a probability of initiation 

occurring.  They demonstrated the developments with parameters for µF TATB as the explosive, providing 

a set of critical parameters and standard deviation of J as 

𝐸𝑐 = 0.26
𝑀𝐽

𝑚2
,     Σ𝑐 = 0.67

𝑀𝐽

𝑘𝑔
,   𝜎𝐽 = 0.15 (3) 

These parameters were used in this study as the basis for computational predictions. 

Binary Logistic Regression Model 

Binary Logistic Regression10 is a regression technique by which categorical data can be used as a response 

variable.  The model approach allows overlap in predictor variables versus observed category to build a 

probabilistic function describing the likelihood of a predictor to fit into a given category.  In the previous 

study6 the predictor variable was Jmax and the categorical response variable was detonation or non-

detonation.  Some attempt was made to delineate IM reaction type (I,II,III, etc) as the response variable, 

but the experimental uncertainty caused this analysis to be ineffective. 

Mathematically, the approach takes the exponential of a linear function to represent the probability of 

category fit, as shown in Eq. 4 below, where x represents a predictor variable and p is the probability that 

the response will fit in a base (null) category.   

𝑝(𝑥) =  
1

1 + 𝑒−𝑎𝑥−𝑏
 (4) 

In a least-squares regression model the parameters are fit by minimizing the squared error, which is 

analytically tractable in the case of continuous predictor and response variables.  In the logistic regression 

models, a likelihood function optimization is used to fit the slope and intercept of the linear function to 

experimental data.  The likelihood function is a measure of model error, and is defined 

𝐿𝐿 =  ∑ 𝑦𝑖

𝑛

𝑖=1

𝑙𝑛(𝑝𝑖) + (1 − 𝑦𝑖) 𝑙𝑛(1 − 𝑝𝑖) (5) 

The y in Eq. 5 is the observed fraction of observations fitting into the null category, and the subscript i 

refers to the predictor variable level.  This equation is maximized numerically to fit the slope and intercept 

(a and b from Eq. 4). 
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Simulation Approach 

In order to validate the described approach, a simulation strategy was devised to represent the process.  

Using the parameters in Eq. (3) 2D, axisymmetric hydrocode simulations were performed in ALE3D11 with 

a null-constitutive model and Mie-Gruneisen Equation of State for µF TATB.  The explosive was modeled 

as a 100 mm diameter by 50 mm length cylinder, with a 3mm case and the impact occurring on one of the 

two flats.  The standard IM fragment geometry (STANAG 4496) was used, and impact velocity varied from 

300 – 3,000 m/s.  The simulation geometry is shown in Fig. 1. 

 

 

Figure 1. Hydrocode model geometry.  This geometry was used throughout the simulation series. 

The value of J was calculated by defining a derived variable in the hydrocode analysis.  The derived variable 

is calculated across the mesh domain.  It is extracted as the mean value from a nodeset of the same radius 

as the tracer particle and 0.2 mm thick located 0.05 mm inside the explosive.  Nodes on the case boundary 

and symmetry plane were excluded intentionally to avoid numeric noise.  Calculated values of Jmax are 

plotted versus velocity in Fig. 2. 
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Figure 2. Calculated Jmax at various impact velocities.  Relationship is apprx. quadratic. 

The mean (1.0) and standard deviation (0.15) of J were used to calculate the Z-statistic, leading to the 

probability of detonation represented in Fig. 3. 

 

Figure 3. Probability curve plotted with impact velocity for known James parameters. 
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This probability function was used to generate a set of 25 ‘observations’.  Using random numbers, impact 

velocities between 1675 and 1980 m/s were generated to represent test data.  Another random number 

was compared against the p-value at the given velocity.  If the random number exceeded the p-value, 

non-detonation (0) versus detonation (1) was recorded.  This process represents experimental uncertainty 

such as impact location variations while providing the actual p-value (devoid of external influence) to 

compare with the predictions made with arbitrary critical values. The generated data appears in Table 1. 

Table 1.  Randomly generated observations from known parameter probability curve. 

 

Further simulations were performed using arbitrary values of the critical parameters, which appear in 

Table 2. 

Impact 

Velocity J (KNOWN) Z P

Random 

Number Result

m/s -- -- -- --

1798 1.167 1.111 0.867 0.629 1

1719 1.075 0.501 0.692 0.836 0

1924 1.137 0.912 0.819 0.023 1

1873 1.019 0.128 0.551 0.313 1

1870 1.108 0.717 0.763 0.939 0

1768 1.095 0.632 0.736 0.584 1

1867 1.001 0.007 0.503 0.637 0

1798 0.947 -0.356 0.361 0.679 0

1693 0.996 -0.027 0.489 0.022 1

1829 1.035 0.233 0.592 0.184 1

1725 1.025 0.164 0.565 0.840 0

1837 1.200 1.332 0.909 0.119 1

1737 1.096 0.641 0.739 0.475 1

1816 0.966 -0.226 0.410 0.753 0

1683 1.057 0.381 0.648 0.251 1

1772 1.031 0.204 0.581 0.889 0

1901 1.144 0.961 0.832 0.442 1

1829 1.166 1.107 0.866 0.110 1

1848 1.124 0.828 0.796 0.122 1

1854 1.094 0.625 0.734 0.455 1

1803 1.030 0.201 0.580 0.964 0

1790 1.025 0.168 0.567 0.502 1

1843 1.153 1.018 0.846 0.923 0

1811 0.978 -0.144 0.443 0.296 1

1770 1.096 0.643 0.740 0.267 1
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Table 2.  Simulation matrix showing the ‘guess’ values of Ec and Σc. 

 

Results & Discussion 

When the arbitrary values of Ec and Σc are substituted for the known values, the response curve changes 

shape significantly, though a quadratic regression still fits extremely well.  The Jmax versus velocity plots 

for several iterations appear in Fig. 4. 

 

Figure 4. Predicted Jmax values for arbitrary values at various velocities 

For each set of parameters, the Jmax parameter was computed from the regression fit for each velocity in 

the observation data.  A BLR model was fit to the Jmax predictor with the randomized result as response 

variable for the first 5, 10, 15, and 20 observations.  The remainder of observations were then used to test 

predictive capability of the resulting model fit.  Probability of detonation versus impact velocity is shown 

in Fig. 5 for the known case compared to the two most different sets of Ec and Σc in terms of J (0.1-0.1 and 

0.1-0.9).  The prediction is only marginally improved by increasing the size of the sampled dataset from 

10 to 20.  In each case, it was found that the BLR model detonation probability remained unchanged for 

Ec Σc

MJ/m2 MJ/kg

Known 0.26 0.67

Variation 1 0.1 0.1

Variation 2 0.1 0.9

Variation 3 0.9 0.9

Variation 4 0.9 0.1
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any value of Ec and Σc, which does tend to validate the previous approach.  No attempt has been made to 

verify this finding mathematically at this point.  The function optimization aspect of the BLR method is 

handled numerically, making it difficult to analytically prove the finding. 

In terms of model accuracy, 76% of observations were correctly categorized according to recorded 

reaction (1 or 0) and approximately the same proportion according to known probability.  The number of 

observations correctly categorized remains consistent across the range of sample size.  This is a similar 

accuracy to the previous study, though in that case the true underlying distribution parameters were 

unknown. 

 

Figure 5. Estimated probability curves from BLR compared to known probability curve. 

 

In light of the findings that show BLR results remaining across different values of Ec and Σc another question 

is raised.  How can the predictive capability of this approach be improved?  From Fig. 5, it can be seen that 

the slope of the BLR probability is steeper than the known probability curve.  It was speculated that this 

stems from all of the observation data being close to the threshold, without bounding values on the 

extremes.  The first two observations were altered to 2,430 m/s (1.0 Reaction = Detonation) and 610 m/s 

(0.0 Reaction = Non-detonation) and the analysis was repeated for the Ec ,Σc = 0.1,0.1 case.   

The BLR predictive capability improved to 96% using 20 observations, and dropped to 72% using 5 

observations.  This is likely due to the first two observations being changed, leaving only 3 threshold 

observations in the 5 sample dataset versus 18 in the 20 sample dataset.   The effect is to skew the 

probability estimate, as there are fewer anchor points toward the center of the curve.  When 20 

observations, including the bounding samples, are included the curve is well enough characterized to 

nearly replicate the known probability curve.  The improved probability estimates appear in Fig. 6.  
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Figure 6. Improved estimate probability curves from BLR compared to known probability curve. 

 

Conclusion 

The simulation approach utilized in a previous study6 has been validated through a series of hydrocode 

simulations designed to investigate the variance of predictions made with a combined James model / 

binary logistic regression model.  Through these simulations, it was shown that the BLR predictions remain 

unchanged when parameters are selected arbitrarily.  It was further shown that the addition of bounding 

cases to the data set drastically improves the predictive capability of the model. 

The importance of this study lies in the ability to pivot from a relatively small number of impact tests into 

a predictive capability for further tests.  As in the prior work, the intent is to provide a means to iteratively 

improve a munition’s response to impact stimulus.  As more design variations are tested within a 

geometry envelope, the model prediction will become increasingly accurate. 
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