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Background — Hugh James Criteria

 The James criteria is a phenomenological model of shock initiation
* “James Space” — energy fluence and specific kinetic energy

* |f critical values of energy fluence, E, and specific kinetic energy, X, are
surpassed, then initiation is predicted.

e Concept extended by Hrousis, et al, to a generalized parameter, J
e J] <1 - non-initiation with margin
e J=1 - marginal initiation
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e ] >1 - initiation with margin =77
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James, H. R. An extension to the critical energy criterion used to predict shock initiation thresholds. Propellants Explos. Pyrotech. 21, 8—13 (1996).
Hrousis, C. a, Gresshoff, M. & Overturf, G. E. Probabilistic Shock Initiation Thresholds and QMU Applications. (2009).
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Background — QMU Thresholds

* Hrousis’ extensions result in a probability density function for
initiation.
 Mean value of 1.0 for initiation
e Estimate of uncertainty in critical values leads to standard deviation
e Assume normally distributed



Background — BLR Model

e Linear regression between categorical observations

* Probability density function yields likelihood that observation fits into

a category
1

1+ e-ax-b

p(x) =

e Log-Likelihood function must be numerically optimized to maxima to
fit slope and intercept of linear function f(x) = ax + b

LL = Z yiln(p) + (1 —y;) In(1 —p;)

=1



Background — Prior Effort
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* Previous effort substituted arbitrary e
values for critical values - :
e Suitable critical values not located for ..

main fill HE (LX-14)
* Multiple Fragment Impact (Fl) test data
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points were available

 Hydrocode simulations of test data used ; .
to estimate J-parameter ; $
e Binary Logistic Regression (BLR) model I ¢ $ g
tied to FI test observations § ¢ 3

=]
=
[
La

Observed Reaction

Sweitzer, J. C. & Peterson, N. R. Method for Prediction of Fragment Impact Response Using Physics Based Modeling and Statistical Analysis. Procedia Eng. 103, 601-609 (2015).
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Problem Statement

* The previous effort substituted arbitrary parameters for the critical
values under the assumption that the BLR would correctly categorize
results from Fl tests.

* The validity of this assumption was not investigated in detail

Hypothesis:

A BLR model fit to experimental data is a good estimator of
the true probability density.



Methodology

* Validity of hypothesis tested by using the parameters of Hrousis, et al

for uF-TATB to generate a matrix of simulated ‘observations’
e Hydrocode calculations performed with the known E, 2.

e Yields ‘True’ probability density

e Iterations with arbitrary E., X, random number
compared to p-value from ‘True’ probability

function.

e Yields ‘Observations’ to fit BLR model

EC zC

MJ/m2  MJ/kg

Hypothesis is tested by comparing pdf Known 0.26 0.67
‘ ’ Variation 1 0.1 0.1

of BLR model to ‘True’ pdf. Variation 2| 0.1 09
Variation 3 0.9 0.9

Variation 4 0.9 0.1
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Calculation Results

e Quadratic relationship between
impact velocity and calculated
Jmax in all cases.

e P-value vs random number
results in overlap of
observations

e Some impacts with J < 1 initiate
e Some impacts with J > 1 do not

* Consistent with observations in
FI & Gap Tests
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Generated Observation Matrix

Impact Random
Velocity J (KNOWN) z P Number Result
{ . V4 _ — — —
e Set of 25 ‘observations’ generated T T T T 1
* Randomized impact velocity S oo e oo
1873 1.019 0.128 0.551 0.313 1
1870 1.108 0.717 0.763 0.939 0
- 1768 1.005 0.632 0.736 0.584 1
 J-values from known critical parameters 1867 1001 0007 0503  0.637 0
o . 1798 0.947 10.356 0.361 0.679 0
used for pr0b3b|l|ty denSIty 1693 0.996 .0.027 0.489 0.022 1
1829 1.035 0.233 0.592 0.184 1
1725 1.025 0.164 0.565 0.840 0
. . 1837 1.200 1.332 0.909 0.119 1
 BLR models fit to increments of 5 data 1737 1096 0641 0739 0475 1
) i 1816 0.966 0.226 0.410 0.753 0
points for each set of arbitrary 1683 1.057 0.381 0.648 0.251 1
1772 1.031 0.204 0.581 0.889 0
parameters 1901 1.144 0.961 0.832 0.442 1
1829 1.166 1.107 0.866 0.110 1
* N=5,10,15, 20, 25 1848 1.124 0.828 0.796 0.122 1
1854 1.004 0.625 0.734 0.455 1
1803 1.030 0.201 0.580 0.964 0
1790 1.025 0.168 0.567 0.502 1
1843 1.153 1.018 0.846 0.923 0
1811 0.978 0.144 0.443 0.296 1
1770 1.096 0.643 0.740 0.267 1
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BLR Model Fit

 The BLR model predictions remain consistent regardless of critical

parameter values used.
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Sample Size Dependence

e Some sensitivity to sample size, !

but generally consistent with - SZ

N=5 through N=20 § 07

e Provided that all observations are % EE

in the vicinity of initiation Z 0.

threshold ﬁé 03

e Caveat: The BLR model fit : -

requires overlap in the 0
observations, ie sub-threshold o .mpiffie.ocfﬂi,s] o

initiation and supra-threshold
non-initiation.

s K NOWN 0.1-0.1, N=5 O 0.1-0.1, N=20
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Improved BLR Model Fit — Anchor Points

 The BLR model correctly categorized ! g
. 0.9
~76% of observations. —os g
e Deviation mostly limited to the high and § 07 P
low impact velocities. £ EE ?
I L)
e Observations were purposely Z 04 5
generated to be near the initiation £ N
threshold. 01 o

e Predictive Capablllty could be 0 500 1000 1500 2000 2500 3000 350
improved by adding ‘Anchor Points’ at mpact Velocty [m/s]
velocity extremes. — Known

0.1-0.1, N=10 O 0.1-0.9, N=10
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Improved BLR Model Fit — Anchor Points

 First two observations replaced with
anchor points
500 m/s — Non-initation
e 2500 m/s — Initiation

e Ordered observations skew the sample
size for smaller sets (N=5,10 diverge
more)

e N=5, 72% categorized correctly
e N=10, 88% categorized correctly
e N=20, 96% categorized correctly

e Approaches the ‘True’ probability curve
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Conclusions

e This technique is effective as an estimator of initiation threshold in
the absence of well-characterized Hugh James parameters, given that
some test data is available.

e Generally small sample sizes produce very reasonable estimates of initiation
threshold, provided that they are all near-margin (76%, N=5)

e Much improved accuracy is possible by providing anchor points, but larger
sample sizes are necessary (72%, N=5 -> 96%,N=20)

* Critical parameters and associated standard deviation in J could
potentially be backed-out of this analysis.

e Complicated by numeric optimization of LL function in regression analysis.
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Questions?
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