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Background – Hugh James Criteria

• The James criteria is a phenomenological model of shock initiation
• “James Space” – energy fluence and specific kinetic energy
• If critical values of energy fluence, E, and specific kinetic energy, Σ, are 

surpassed, then initiation is predicted.

• Concept extended by Hrousis, et al, to a generalized parameter, J 
• J < 1 → non-initiation with margin
• J = 1 → marginal initiation
• J > 1 → initiation with margin 𝐽𝐽 =
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Background – QMU Thresholds

• Hrousis’ extensions result in a probability density function for 
initiation.

• Mean value of 1.0 for initiation
• Estimate of uncertainty in critical values leads to standard deviation
• Assume normally distributed



Background – BLR Model

• Linear regression between categorical observations
• Probability density function yields likelihood that observation fits into 

a category

• Log-Likelihood function must be numerically optimized to maxima to 
fit slope and intercept of linear function f x = 𝑎𝑎𝑎𝑎 + 𝑏𝑏
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Background – Prior Effort

• Previous effort substituted arbitrary 
values for critical values

• Suitable critical values not located for 
main fill HE (LX-14)

• Multiple Fragment Impact (FI) test data 
points were available

• Hydrocode simulations of test data used 
to estimate J-parameter

• Binary Logistic Regression (BLR) model 
tied to FI test observations

Sweitzer, J. C. & Peterson, N. R. Method for Prediction of Fragment Impact Response Using Physics Based Modeling and Statistical Analysis. Procedia Eng. 103, 601–609 (2015).



Problem Statement

• The previous effort substituted arbitrary parameters for the critical 
values under the assumption that the BLR would correctly categorize 
results from FI tests.

• The validity of this assumption was not investigated in detail

Hypothesis: 
A BLR model fit to experimental data is a good estimator of 
the true probability density. 



Methodology

• Validity of hypothesis tested by using the parameters of Hrousis, et al 
for uF-TATB to generate a matrix of simulated ‘observations’

• Hydrocode calculations performed with the known 𝐸𝐸𝑐𝑐, Σ𝑐𝑐
• Yields ‘True’ probability density

• Iterations with arbitrary 𝐸𝐸𝑐𝑐, Σ𝑐𝑐, random number 
compared to p-value from ‘True’ probability 
function.

• Yields ‘Observations’ to fit BLR model

Ec Σc

MJ/m2 MJ/kg
Known 0.26 0.67
Variation 1 0.1 0.1
Variation 2 0.1 0.9
Variation 3 0.9 0.9
Variation 4 0.9 0.1

Hypothesis is tested by comparing pdf 
of BLR model to ‘True’ pdf.

Probability of initiation at various impact velocities



Calculation Results

• Quadratic relationship between 
impact velocity and calculated 
Jmax in all cases.

• P-value vs random number 
results in overlap of 
observations

• Some impacts with J < 1 initiate
• Some impacts with J > 1 do not

• Consistent with observations in 
FI & Gap Tests



Generated Observation Matrix

• Set of 25 ‘observations’ generated
• Randomized impact velocity

• J-values from known critical parameters 
used for probability density

• BLR models fit to increments of 5 data 
points for each set of arbitrary 
parameters

• N = 5, 10, 15, 20, 25 

Impact 
Velocity J (KNOWN) Z P

Random 
Number Result

m/s -- -- -- --
1798 1.167 1.111 0.867 0.629 1
1719 1.075 0.501 0.692 0.836 0
1924 1.137 0.912 0.819 0.023 1
1873 1.019 0.128 0.551 0.313 1
1870 1.108 0.717 0.763 0.939 0
1768 1.095 0.632 0.736 0.584 1
1867 1.001 0.007 0.503 0.637 0
1798 0.947 -0.356 0.361 0.679 0
1693 0.996 -0.027 0.489 0.022 1
1829 1.035 0.233 0.592 0.184 1
1725 1.025 0.164 0.565 0.840 0
1837 1.200 1.332 0.909 0.119 1
1737 1.096 0.641 0.739 0.475 1
1816 0.966 -0.226 0.410 0.753 0
1683 1.057 0.381 0.648 0.251 1
1772 1.031 0.204 0.581 0.889 0
1901 1.144 0.961 0.832 0.442 1
1829 1.166 1.107 0.866 0.110 1
1848 1.124 0.828 0.796 0.122 1
1854 1.094 0.625 0.734 0.455 1
1803 1.030 0.201 0.580 0.964 0
1790 1.025 0.168 0.567 0.502 1
1843 1.153 1.018 0.846 0.923 0
1811 0.978 -0.144 0.443 0.296 1
1770 1.096 0.643 0.740 0.267 1



BLR Model Fit
• The BLR model predictions remain consistent regardless of critical 

parameter values used.



Sample Size Dependence

• Some sensitivity to sample size, 
but generally consistent with 
N=5 through N=20

• Provided that all observations are 
in the vicinity of initiation 
threshold

• Caveat: The BLR model fit 
requires overlap in the 
observations, ie sub-threshold 
initiation and supra-threshold 
non-initiation.



Improved BLR Model Fit – Anchor Points

• The BLR model correctly categorized 
~76% of observations.

• Deviation mostly limited to the high and 
low impact velocities.

• Observations were purposely 
generated to be near the initiation 
threshold.

• Predictive capability could be 
improved by adding ‘Anchor Points’ at 
velocity extremes.



Improved BLR Model Fit – Anchor Points

• First two observations replaced with 
anchor points

• 500 m/s – Non-initation
• 2500 m/s – Initiation

• Ordered observations skew the sample 
size for smaller sets (N=5,10 diverge 
more)

• N=5,   72% categorized correctly
• N=10, 88% categorized correctly
• N=20, 96% categorized correctly

• Approaches the ‘True’ probability curve



Conclusions

• This technique is effective as an estimator of initiation threshold in 
the absence of well-characterized Hugh James parameters, given that 
some test data is available.

• Generally small sample sizes produce very reasonable estimates of initiation 
threshold, provided that they are all near-margin (76%, N=5)

• Much improved accuracy is possible by providing anchor points, but larger 
sample sizes are necessary (72%, N=5 -> 96%,N=20)

• Critical parameters and associated standard deviation in J could 
potentially be backed-out of this analysis.

• Complicated by numeric optimization of LL function in regression analysis.



Questions?
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