Explosives Ordnance Disposal (EOD) of Insensitive Munitions: Challenges and Solutions

P. Brousseau, S. Thiboutot, E. Diaz **DRDC Valcartier Research Centre**

Outline

- Introduction: The Problem
- Test Method
- Results
- Future Work
- Conclusion

Introduction: The Problem

- Insensitive Munitions were developed to resist external stimuli
 - Such as shock
- Most munitions have a dud rate
 - They require destruction on military training ranges during training
- Traditional methods use plastic explosives on the side of the round
 - Applying shock
- Insensitive Munitions will be more difficult to destroy
 - Obtain partial detonations
 - Material spread on the training ranges
- We want to avoid contamination of the ranges

Introduction: The Problem

We observed that: Amount of explosives spread ∞ Insensitiveness

We need new EOD methods for IM!

- Test EOD methods coupled with Deposition Rate tests
- Tests on snow
- Collect the snow and analyze the residues

DRDCIRDDC

- Army warhead
- Large calibre
 - Generic for this study
 - Method applicable to mortars, artillery and other ammo
- Explosive contains
 - NTO
 - DNAN
 - Nitramine
- The residues post-detonation were analysed for those products

- Two parameters defined
 - Deposition rate (of each energetic material)

$$DR$$
 (%) = $\frac{Mass\ of\ ingredient\ deposited}{Initial\ mass\ of\ ingredient} \times 100\%$

Detonation efficiency

$$DE(\%) = 100 - (\frac{Mass\ of\ products\ deposited}{Total\ mass\ of\ products} \times 100)$$

- We tested different EOD methods
 - Plastic explosives on the side of the round (different configurations)
 - Shaped charges aimed at the side of the round
 - Shaped charges aimed at the booster
 - Shaped charges aimed at the back of the round
- We like shaped charges for EOD
 - Previous project
 - Good results with conventional rounds and small shaped charges
 - Poor results in the past with IM and small shaped charges
 - "There is always a shaped charge large enough"

- First tests are normal functioning rounds, in static
 - Our IM round
 - Detonation efficiency = 99.999%
 - Compares well with Composition B in mortar and artillery rounds (literature)
- EOD Method 1: Using plastic explosives
 - 3 different methods
 - All looked full-order
 - The results are lower than EOD of Comp. B filled rounds (60-mm and 81-mm)
 - DE = 99.93% and 99.998%

DE = 72%, 83%, and 97%

- EOD Method 2: Medium (67-mm) commercial shaped charge on the side
 - Interesting detonation efficiency

- EOD Method 3: Small (33-mm) and Medium (67-mm) commercial shaped charges aimed at the booster
 - Small shaped charge better than medium shaped charge
 - More precise?

DE = 99.1%, 40.5%

- EOD Method 4: Medium (67-mm) commercial and large (84-mm) military shaped charges aimed at the back of the round
 - Medium shaped charge also gives bad results
 - Large shaped charge performs exceptionally well
 - As good as the EOD of Comp. B

DE = 74.3%, 99.8%

- EOD Method 4: Large (84-mm) military shaped charges aimed at the back of the round
 - Tests repeated
 - Even better results

DE = 99.999%

- NTO often gave higher deposition rates than DNAN
 - Counter-intuitive
 - NTO is a good IM ingredient
- NTO results are often variable in those tests on snow
 - High water solubility
 - Disappearance in snow

Future Work

- Alternative EOD methods being tested
 - Shaped charge tailored for EOD operations
 - Cutting charges for very insensitive explosives
 - Thermites to initiate a burning reaction
 - Burning may be cleaner
 - Modifications to the IM formulations to optimize the detonation efficiency
 - High-power lasers

Conclusions

- EOD methods of IM with plastic explosives can be deceiving
 - Low detonation efficiencies
- EOD methods with shaped charges gave variable results
 - On the side, good results
 - At the booster, promising results
 - At the back, some great results with a large shaped charge
- New EOD methods are being tested
- EOD operators may have to be more knowledgeable

SCIENCE, TECHNOLOGY AND KNOWLEDGE

FOR CANADA'S DEFENCE AND SECURITY

SCIENCE, TECHNOLOGIE ET SAVOIR

POUR LA DÉFENSE ET LA SÉCURITÉ DU CANADA