THE VALUE OF PERFORMANCE.

Comparison of Shock Stimuli from Current Hazard Classification Testing and Potential Threats

International Explosives Safety Symposium and Exposition San Diego, CA August 6-9, 2018

Paul Braithwaite, Robert Hatch, Robert Wardle Northrop Grumman Innovation Systems

DISTRIBUTION A: APPROVED FOR PUBLIC RELEASE

### Outline



- Background
- Understanding the TB 700-2 Option 2 Shock Test
  - Impulse and Pressure Effects
  - Modeling Potential Accident Scenarios
- Pathfinder Experimental Studies
  - Booster Selection to Approach Constant Impulse Testing
  - Critical Diameter Determination
  - Go/No-Go Testing Using Different Booster Geometries
- Evaluation of Experimental Data
  - Comparison with Project SOPHY Data
  - Influence of Booster Configuration
- Summary
- Recommendations



- United States hazard classification of energetic materials and devices is governed by a Joint Technical Bulletin (TB 700-2, NAVSEAINST 8020.8C and TO 11A-1-47) titled: "Department of Defense Ammunition and Explosives Hazard Classification Procedures"
- Rocket motors are typically given one of the following hazard classifications:
  - HC 1.1 (mass explosion hazard)
  - HC 1.3 (mass fire hazard)
- It is highly desirable that large solid rocket motors have a HC 1.3 designation
  - HC 1.1 items have much larger quantity distance requirements, which adds a substantial logistic and facility burden
- A major, and often challenging, requirement in TB 700-2 is associated with shock sensitivity testing

### Shock Testing – Current Protocol

• The TB 700-2 shock testing protocol is summarized below:



IORTHROP GRUMMAN

Option 2 is often the only viable path to a HC 1.3 for high performance rocket propellants used in large motors

DISTRIBUTION A: APPROVED FOR PUBLIC RELEASE

# Shock Testing – Unintended Consequences



- Observation: Current Option 2 shock testing protocol penalizes formulations with larger critical diameters
- The following example illustrates this problem:
  - Formulation A has a 3.33-inch critical diameter while Formulation B has an 8-inch Dc
    - With a larger Dc, *Formulation B would be assessed to be less shock sensitive* and should have a better chance of passing shock testing needed for a 1.3 HC
- To pass Option 2, Formulation B must utilize:
  - A larger test article
  - A larger booster

Larger boosters and test articles drive impulse higher at constant pressure

| Critical Diameter Case Study |                 |                |  |  |  |  |
|------------------------------|-----------------|----------------|--|--|--|--|
|                              | Formulation A   | Formulation B  |  |  |  |  |
| Parameter                    | (Dc = 3.33 in.) | (Dc = 8.0 in.) |  |  |  |  |
| Nominal Article Wt (lb.)     | 25.5            | 353            |  |  |  |  |
| TB 700-2 Compliant           |                 |                |  |  |  |  |
| Booster Wt (lb.)             | 4.7             | 44.2           |  |  |  |  |
| Impulse @ 70 kbar            |                 |                |  |  |  |  |
| (kbar-µ sec)                 | 440             | 1122           |  |  |  |  |

# Understanding Impulse – Lessons from Project SOPHY



- Curves shown were drawn from test data for propellants containing RDX
- Minimum shock to drive sustained detonation of a zero percent AP propellant was estimated as 8-10 kbar
- Results did not agree with recent work and caused us to carefully analyze relevant literature on this topic



Figure 50 from the SOPHY II Final Report

### DISTRIBUTION A: APPROVED FOR PUBLIC RELEASE

### Analysis of SOPHY Data – Finding a Path Forward

- Theoretical analysis of SOPHY data • suggests impulse should be considered when determining relative shock sensitivity
  - Trend with impulse follows known sensitivity, go/no-go pressure does not







# Another Important Piece to the Puzzle – Modeling Potential Unplanned Events

- Impulse experienced by a typical larger rocket was modeled for:
  - 0.50 cal bullet impact
  - 80-ft drop
  - 100 and 150 mph collision
- Impulse from potential events is far less violent than a 70-kbar test of a 5inch diameter article
  - 5-inch diameter is the smallest size test article allowed for Option 2 shock testing



HROP GRUMMA



- Interface impulse produced by full diameter boosters increases at constant pressure as article diameter grows
  - Full diameter boosters are required by TB 700-2 in Option 2 testing
- Reducing the booster height while maintaining diameter produces a relatively slow decrease in impulse
  - Large article with full diameter booster = high impulse
    - Even with reduced weight booster!
  - Small article with full diameter booster = lower impulse

| Calculations with 70 kbar Peak Pressure at PMMA/Propellant Interface |                |        |            |          |                   |  |  |  |
|----------------------------------------------------------------------|----------------|--------|------------|----------|-------------------|--|--|--|
| Propellant Acceptor                                                  | Comp B Booster |        | Attenuator | Pressure | Impulse @ 70 kbar |  |  |  |
| O.D. (in.)                                                           | Height (in)    | Wt (g) | O.D. (in)  | (kbar)   | (kbar-µ sec)      |  |  |  |
| 6.00                                                                 | 6.25           | 2739   | 6.25       | 70       | 530               |  |  |  |
|                                                                      |                |        |            |          |                   |  |  |  |
| 9.00                                                                 | 9.25           | 7553   | 9.26       | 70       | 788               |  |  |  |
| 9.00                                                                 | 2.00           | 1772   | 9.25       | 70       | 641               |  |  |  |



- Modeling was used to understand the relationship between booster size and geometry on impulse delivered at constant pressure
- Variations were based on practical options and included:
  - Changes to booster geometry
  - Attenuator shape/geometry (no significant influence on impulse)

| Calculations with 70 kbar Peak Pressure at PMMA/Propellant Interface |                |            |        |            |          |              |  |  |
|----------------------------------------------------------------------|----------------|------------|--------|------------|----------|--------------|--|--|
| Propellant                                                           |                |            |        | PMMA       |          |              |  |  |
| Acceptor                                                             | Comp B Booster |            |        | Attenuator | Pressure | Impulse      |  |  |
| O.D. (in.)                                                           | Height (in.)   | O.D. (in.) | Wt (g) | O.D. (in.) | (kbar)   | (kbar-µ sec) |  |  |
| 5.0                                                                  | 5.25           | 5.25       | 1807   | 5.25       | 70       | 439          |  |  |
| 6.0                                                                  | 5.25           | 5.25       | 1807   | 6.25       | 70       | 459          |  |  |
| 8.0                                                                  | 5.25           | 5.25       | 1807   | 8.25       | 70       | 459          |  |  |
| 12.0                                                                 | 5.25           | 5.25       | 1807   | 12.25      | 70       | 459          |  |  |

Modeling indicates when the same booster is used for tests of increasing diameter, the larger articles see only a small increase in impulse!

### Experimental Study



- A pathfinder experimental study complemented modeling efforts
- Goal was to learn whether the pressure and impulse trends observed in Project SOPHY would hold for modern propellants
- A new formulation was developed for this study
  - Composition incorporated lessons learned since the 1960s to achieve maximum performance with minimum sensitivity
- Targeted critical diameter was 2 to 3 inches
  - Allowed direct comparison with SOPHY Propellant A
    - Dc = 2.7 inches



2.25 inch: go

2.0 inch: no-go

12

#### DISTRIBUTION A: APPROVED FOR PUBLIC RELEASE

- · Propellant samples were cast in thin-walled plastic cylinders
  - Several tests were above and below Dc

Step 1: Critical Diameter Determination

- Length to diameter was 4:1
- Cylindrical Comp B boosters were used
- Measured Dc was between 2.0 and 2.25 in.
  - Assessed to be 2.125 in.



**General Setup** 



# Step 2: Go/No-Go Testing: Variation in Diameter and Booster



- Step two was to perform "SOPHY like" testing
  - Cast Composition B boosters were used for all tests
    - Initiation train used identical EBWs and Comp A pellets
  - Charge diameter ranged from 2.5 inches to 5 inches
    - Size of 5-inch article was compliant with TB 700-2 Option 2 requirements
    - Diameter to critical diameter varied from 1.18 to 2.35
  - Length to diameter was 4:1
- Small booster was above critical diameter
  - Known to deliver a shock which could initiate the propellant



Small Booster Charge



Full Diameter Booster Charge

### **Test Summary**



- Testing was divided into two different series
- Series 1
  - All tests used a full diameter cylindrical booster
  - Booster length to diameter was fixed at 1
  - Booster weight varied from ~400 g to ~2.5 kg
- Series 2
  - Matched Series 1 acceptor articles
  - Identical small boosters for all tests
- High-speed and real-time video on all tests
  - Go and no-go results were obtained



### **Representative Witness Plates**





Witness Plates: Full Diameter Booster Witness Plates: Small Booster

 Video analysis and witness plate examination were used to determine the acceptor detonated

# Analysis of High-Speed Images Provided Valuable Insight into Reaction Type and Extent



NORTHROP GRUMMAN

+ 0.050 sec

DISTRIBUTION A: APPROVED FOR PUBLIC RELEASE

+ 0.001 sec

- NORTHROP GRUMMAN
- New propellant is more energetic and has a smaller critical diameter than SOPHY formulation
- New formulation requires higher pressure to cause a detonation
  - Suggests progress has been made during the past 50 years!



DISTRIBUTION A: APPROVED FOR PUBLIC RELEASE

NORTHROP GRUMMAN

- New propellant follows Project SOPHY impulse-diameter trend
- New formulation requires a higher impulse level to cause a detonation







- Theoretical studies support position forwarded by a large number of researchers who have previously studied this area, namely:
  - Current shock criteria are overly conservative with respect to the Class 1.1/Class 1.3 designation
    - Transportation, storage and handling events for large rocket motors generate a relatively low level of pressure and impulse
- Unintended consequence associated with current TB 700-2 Option 2 testing is a concern
  - May favor granting Class 1.3 designation to propellants with low critical diameter when compared with formulations that have moderate critical diameters
- Pathfinder experimental study indicates trends observed in Project SOPHY with respect to go/no-go impulse are valid for today's formulations

### Recommendations



### Near term:

- Incorporate an optional shock testing protocol into current standards
- Perform additional studies to better characterize the relationship between impulse and pressure

### Long term:



 Improve testing used in hazard classification process to better match energy levels and rates of delivery observed in potential handling, storage and transportation events