Siting Assessment for Sounding Rocket Missions

Authors Jon Chrostowski & Ron Lambert ACTA, Inc, CA

2018 NDIA/DDESB Explosives Safety Symposium San Diego, CA

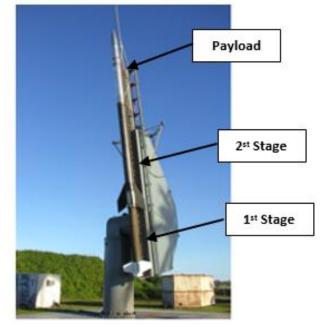
August, 2018

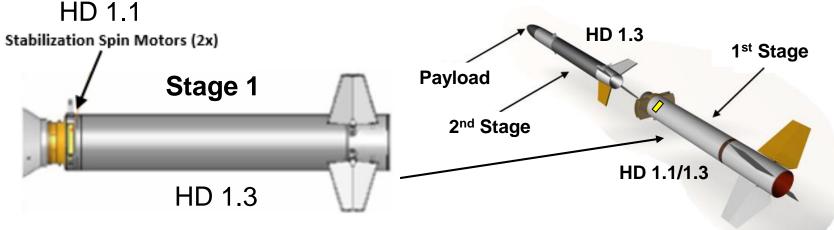
Outline

- Problem Description
- Generic Sounding Rocket
 - Propellant Summary
- Physics-based Analyses
 - Detonation
 - Pressurized Burst
- Comparison of IBD
 - Explosives Standards vs. Physics-based Analyses

Problem Description

- The U.S. sounding rocket program has been active for 50+ years using a variety of rocket configurations/stages/sizes/propellants
- The hazardous propellants can have multiple Hazard Divisions (HD's)
 - HD 1.1 (mass detonating); HD 1.2 (fragment producing); HD 1.3 (mass fire)
- For pre-launch operations (e.g., processing, testing, integration), an Explosives Safety Site Plan (ESSP) must be developed and approved by the DDESB and/or the responsible Organization/Service
 - Quantity-Distance (QD) safe separation distances must be met:
 - Intermagazine, Intraline, Public Traffic Route, Inhabited Building
 Distance
- If a sounding rocket uses a combination of HD 1.1 propellant in close proximity to other HD's, the DoD Explosives Standard "mixing rule" requirements state:
 - The Net Explosive Weight (NEW) is the sum of all HD's and shall be considered HD 1.1 "<u>unless technical justification is provided to reduce</u> <u>the amount</u>".
 - This requirement can lead to violations of QD distances & affect operations





Generic Two-Stage Sounding Rocket

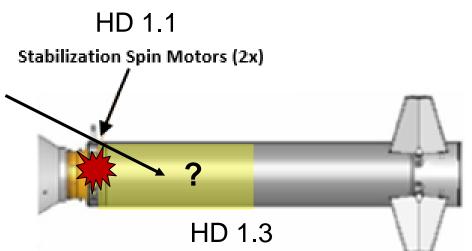
- <u>Stage 1</u>: HD 1.3 solid rocket motor w/ two small HD 1.1 spin stabilization motors
- <u>Stage 2</u>: HD 1.3 solid rocket motor
- Payload: no hazardous propellant

ACTA Inc

Summary of Propellant Weights

• The propellant weights shown below for the "generic" sounding rocket are approximate but representative

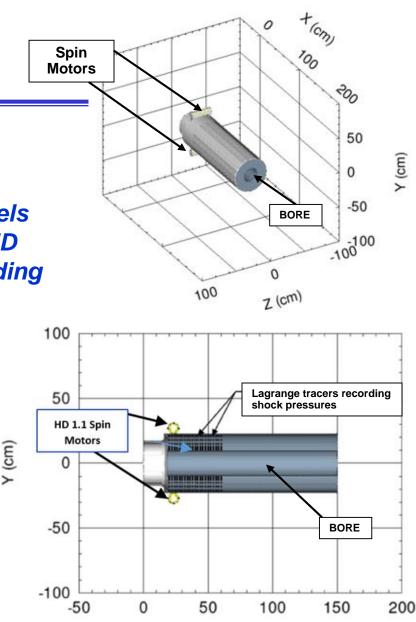
Rocket Stage	Component	Hazard Division	Approx. Propellant Weight (lb)	
Stage 1	Propellant	HD 1.3	1,500	
	Spin Motors (2)	HD 1.1	2 each	
Stage 2	Propellant	HD 1.3	1,000	
		Total	~2,504	


Based on DoD "mixing" rules, the NEWQD would be 2,502 lbs, TNT and considered HD 1.1. And, inhabited Building Distance (IBD) is:

IBD (air blast) = 543 ft IBD (fragmentation) = 1250 ft

Detonation Analysis (1)

- Since the DoD Explosives Standard allows for "<u>technical</u> justification to reduce the NEWQD", a shock physics analysis was performed
- The focus was on an HD 1.1 spin motor detonation & how much of the HD 1.3 <u>Stage 1</u> propellant would promptly react and contribute to the spin motor NEWQD

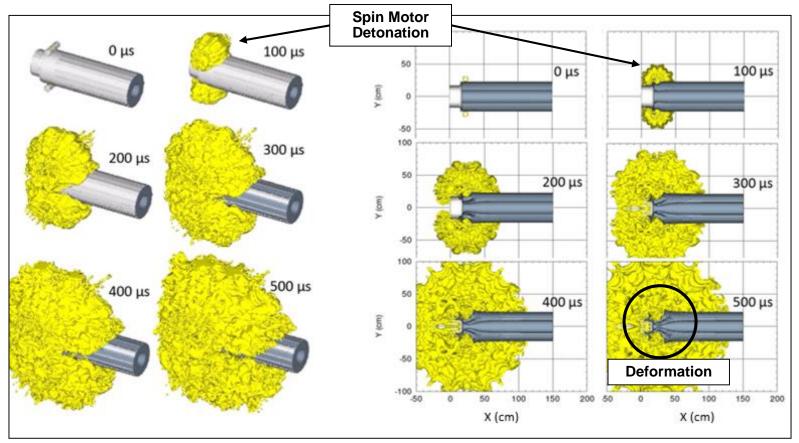


 The Stage 2 motor is sufficiently separated from the Stage 1 motor by an interstage so that it will not participate sympathetically

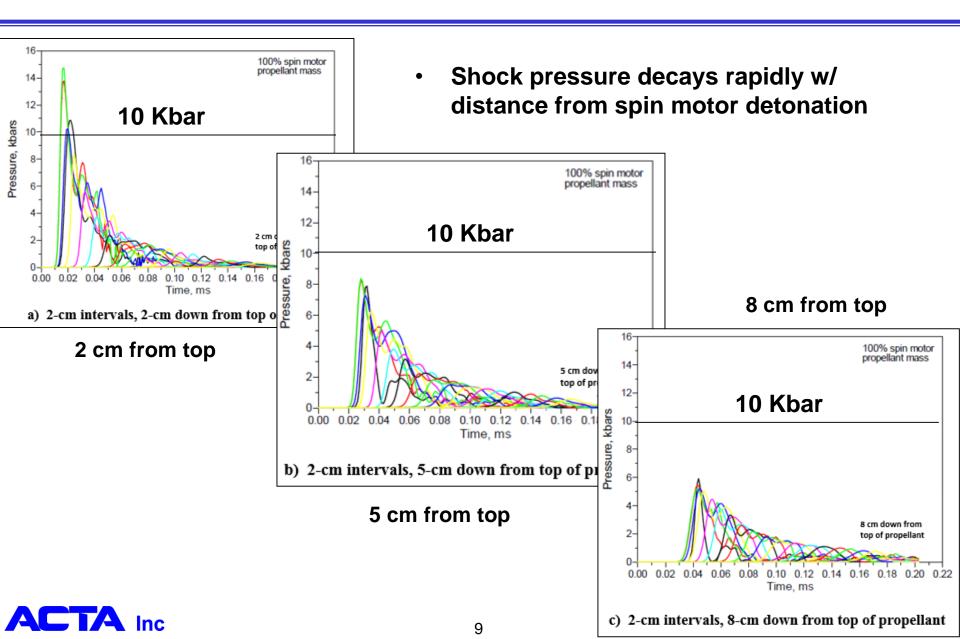
Inc

Detonation Analysis (2)

- A CTH Model was used to perform a shock physics analysis
 - Their PMOD propellant reaction models were used to represent the Stage 1 HD 1.1 & HD 1.3 equations of state including both solid- & gas-phase
- A grid of Lagrangian tracers were placed along the top portion of the Stage 1 propellant
 - Tracers were located on the surface as well as radially inward to the propellant bore
 - The tracers monitored the pressure as a function of time

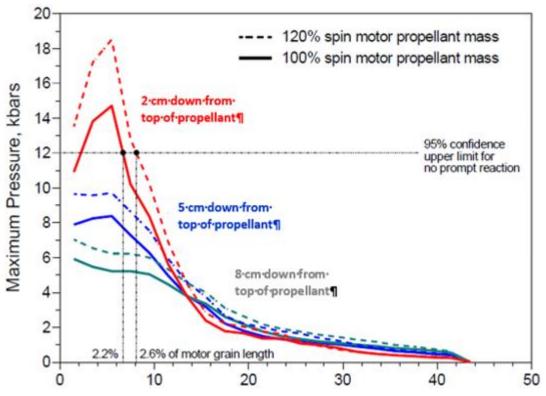


X (cm)


CTH is a family of codes developed at Sandia National Laboratories (SNL) for the purpose of modeling complex multi-dimensional, multi-material problems that are characterized by large deformations and/or strong shocks.

Detonation Analysis (3)

 The CTH simulation is seen to severely deform the forward end of the Stage 1 propellant where peak pressures occur due to the spin motor detonation


Detonation Analysis (4)

Detonation Analysis (5)

- Analyses using shock Hugoniot (i.e., shock pressure versus shock velocity) data and 60-inch critical diameter data for an HTPB composite propellant very similar to the Stage 1 propellant showed the:
 - 95% confidence lower limit of the shock pressure threshold for prompt reaction was estimated to be 12 kbars.
- Using 12 Kbars as the conservative threshold:
 - Only about 2.2% of the propellant on the forward end of the Stage 1 HD 1.3 propellant would promptly react or 34 lb, TNT
- NEWQD (including spin motors) = 45 lbs, TNT

Maximum Pressure vs Distance from Forward End of Stage 1

Horizontal Distance from Forward End of Stage 1 Motor Grain, cm

Includes yield factors of 1.2 for HD 1.3 propellant & 1.25 for HD 1.1 spin motors

ACTA Inc

Stage 1 Burst Analysis

- If a motor stage ignites it may quickly build up internal pressure due to a clogged nozzle and burst
- A conservative estimate of the energy released from a motor burst was performed:
 - Internal volume = 0.54 m^3
 - Max operating pressure = 1500 psia
 - Gamma (specific heat ratio) = 1.2 (based on Cheetah)
- Stored Energy (U) = 110 MJ

$$U = \frac{PV}{\gamma - 1} \left[1 - \left(\frac{P_{atm}}{P}\right)^{\left(\frac{\gamma - 1}{\gamma}\right)} \right]$$

- Equivalent TNT = 46 lb
- This is a conservative estimate

Comparison of NEW and IBD

Blast Hazard	Based on DoD Mixing Rules		Based on Shock Physics Analysis		Based on Gas Physics Analysis	
	NEW (lb)	IBD (ft)	NEW (lb)	IBD (ft)	NEW (lb)	IBD (ft)
Overpressure	2504	543	. 45	142	46	143
Fragmentation		1250		593		595

- Clearly, using the DoD "mixing" rule results in an over-estimation of the NEWQD and the required separation distances
- The shock and gas physics analyses indicate that technical justification can be made to reduce:
 - Air Blast IBD by ~75%
 - Fragmentation IBD by ~50%
- Such distance reductions can have a significant impact on being able to perform pre-launch sounding rocket operations while still ensuring personnel safety

