

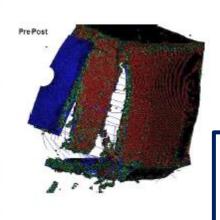
An Overview of AMO-CAT: DDESB's Explosives Safety Knowledge Improvement Program

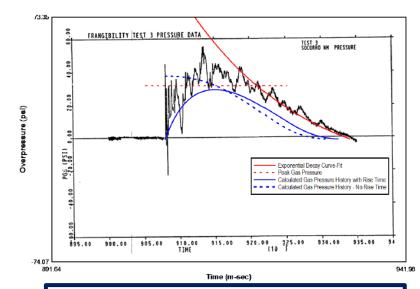
Robert T. Conway, NAVFAC EXWC Dr. Ali Amini, DDESB Brandon Fryman, APT Research, Inc.

- DDESB has established the program Advanced Munitions Operations – Consequence Assessment Trials (AMO-CAT)
- An integrated computational and testing program for development of new and/or enhancement of existing standards in support of explosives safety operations
- Attempt to integrate testing, advance computations, and engineering model development for explosives storage and demilitarization operations, protective construction, and risk assessment
- Intended to advance knowledge base as was done with ESKIMO and ESKIMORE

-Suggest reading paper for summary of Project ESKIMORE

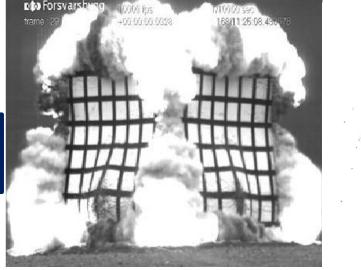
- Effort conducted in 2016 to analyze explosives safety technology gaps and compared with DDESB's mission priorities to develop gap priority matrix
- Categories were discretized into Blast and Primary Fragmentation, Structural Breakup, Mass Fire, and Underwater Explosions
- Example of Gap Priority for Blast and Primary Fragmentation shown below:

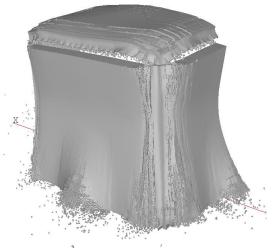

Blast and Primary Fragmentation	Gap Priority
Detonation and Fill Expansion	4
Quasi-Static Pressure (fully vented & frangible vents)	3
Shock Pressure	4
Dynamic Pressure	3
Detonation Product Combustion	3
Case Breakup	4
Fragment Environment	3
Human Injury/fatality	2


Gap Priority Key					
1	Critical Gap - Top Priority - Must do				
2	Significant Gap - High Priority - Should do				
3	Gap - Normal Priority - Should do with partners				
4	Enhancement Needed -Average/Normal priority				
5	No need for effort currently - Adequate knowledge exists				

Ongoing R&D Programs

- Various efforts have been
 ongoing under AMO-CAT
- Two examples
 - -Development of an enhanced gas pressure model
 - Modeling of mass fire in heavy confinement


Gas Pressure rise-time investigation (Protection Engineering Consultants)


Mass fire effects of HD 1.3 in semiconfined conditions (Testing: NAWC-WD China Lake Modeling: NAVFAC EXWC)

- Recently began numerical simulations of structural breakup for the purposes of quantifying hazardous debris
- Structural Breakup topic has been separated into ECM and non-ECM technology gaps for investigation
- ECM specific issues have been elevated in priority

AGM structural break-up Testing: Klotz Group Modeling: Applied Simulations, Inc.

Development of ECM Technical Requirements

- Reached out to Services, end-users, approval authorities, and engineering community to identify issues, gaps, and deficiencies associated with QD criteria
- Maturity of blast/effects and QD technology gaps were assessed in addition to other pressing Service needs

 Significant overlap with AMO-CAT Gap Priority Matrix
- The <u>technology focus area requirements</u> established based on this feedback are:
 - 1. Legacy Flat-Roof ECMs
 - 2. ECM IMD Design Loads
 - 3. ECM Debris Hazards
 - 4. ECM Earth Cover Requirements

AMO-CAT: ECM Testing & Modeling Initiative

- A draft testing and modeling initiative has been established under AMO-CAT to address the Focus Areas identified from the ECM technology focus area requirements
- Each Focus Area has a series of sub-topics that either address separate, but related, issues or represent sequential steps from the overall goal
- Important note: <u>Realization being addressed by multiple</u> <u>sources – not just AMO-CAT Program and/or DDESB</u>
- Background and realization addressed in more detail in associated paper

- An Undefined arch-type ECM does not have an explicit blast design load required but flat-roof ECMs do –Legacy flat-roof ECMs roof not designed against load
- Thousands of these legacy flat-roof ECMs in the DoD inventory
 - –Navy SP&P Type I, Type IIA, and Type IIB most common–Multiple other ECM types currently in service
- Revised siting guidance has required Barricaded AGM IMD unless otherwise specified
- Goal of this research area is to generate data to make ECM IMD criteria less restrictive than Barricaded IMD (K6) where appropriate

ECM IMD Comparison

- Per NAVSEA OP-5, Change 14:
- Minor reduction for Type IIA/IIB up to 350K lb
- Type I has minimal benefit over Barricaded AGM < 250K lb

To Exposed Site (ES)		PES				
		Existing ECM				
		S	R	FB	FU	
Type I Smokeless Powder/Projectile Magazine	S	4.5	4.5	6	6	
		6	6		0	
	R	4.5	4.5	6	6	
		6	6		0	
	FU	6	6	6	11	
	FB	6	6	6	6	
Type IIA or Type IIB Smokeless Powder/Projectile Magazine	S	1.25	1.25	6	6	
		2	2			
		6	6			
	R	1.25	1.25	6	6	
		6	6			
	FU	6	6	6	11	
	FB	6	6	6	6	

To Exposed Site (ES)		PES			
		Existing ECM			
		S	R	FB	FU
ECM (Undefined)	S	1.25	1.25	4.5	4.5
		2	2	6	6
	R	1.25	1.25	2	2
	FU	6	6	6	11
	FB	6	6	6	6

Use up to 250K lb

Use up to 250K lb Use up to 350K lb

Focus Area 1.1: Modeling of the SP&P Type IIA/IIB ECM

- Goal: Through numerical analysis, justify reduction to IMD criteria in certain PES-ES orientations
- Product: Numerical model validated against available test data (ESKIMO VI & VII)
- Realization:
 - -SDOF analysis of the Type IIA/IIB roof does not satisfy UFC 3-340-02 criteria (but not significantly off)
 - –ERDC conducted numerical analyses of the half scale ESKIMO test – focus was on the response headwall
 - –Demonstrate acceptable roof response at lesser K-values
 - K2 Front-to-Rear likely not realistic
 - Partially dependent upon confidence of designs loads at distance other than the minimum ECM IMD (Focus Area 2)

Focus Area 1.2: Modeling of the SP&P Type I ECM

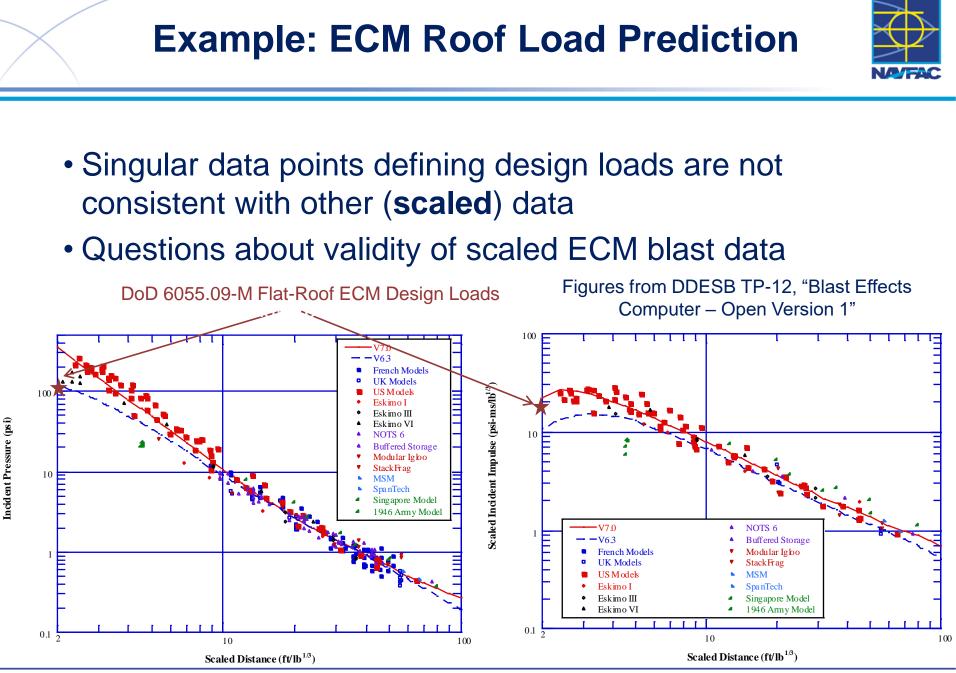
- Goal: Through numerical analysis, justify reduction to IMD criteria in certain PES-ES orientations
- Product:
 - -Numerical model justifying results
 - -Likely requires test data validation (Focus Area 1.3)
- Realization:
 - -Type I roof "not close" to being good by analysis
 - –K&C has generated numerical model responding to a variety of roof loads
 - –Full, 500K lb design load response no good, but model shows more resistance that UFC prescribed analysis
 - -Validation test(s) required for criteria change consideration

Karagozian & Case, Inc.

Focus Area 1.3: HEST Tests of SP&P ECMs

- Goal: Provide validation data points for numerical models of SP&P analyses of Focus Areas 1 and 2
- Product: If approval authorities are agreeable to reduce IMD for SP&P types based on modeling results (pending empirical validation), then a series of HEST tests on the roof are necessary
- Realization:
 - -Most economical path forward is to **identify existing ECMs** where conduct of a HEST test is possible
 - -Based on numerical results and expected blast loads, need to determine which orientations show promise
 - –Based on input from Services, need to determine which IMD reductions would be of most value

Focus Area 2: ECM IMD Design Loads


- ECM blast design loads prescribed in DoD 6055.09-M based on:
 - -Specific PES-ES orientations
 - -Test data (and many times singular data points)
- Current design load basis:

-7-bar headwall (101.5 psi & 13.9W^{1/3}) - K2 Rear-to-Front orientation

-3-bar headwall (43.5 psi & 11.3W^{1/3}) - K1.25 Side-to-Side orientation

–Flat-roof load (108 psi & 19W^{1/3}) – K2 Front-to-Rear orientation

- If you have an existing layout that does not satisfy criteria, an existing legacy flat-roof ECM where Barricaded ECM siting won't work, or have a site specific requirement, there is not currently a path for analysis and/or design
- Note: All new DoD Standard ECM designs are primarily 7-bar ECMs based on 500K lb loads at minimum IMD

NAVFAC EXWC: Technology Driven, Warfighter Focused

Focus Area 2.1: Numerical Analysis of Existing Scaled Data

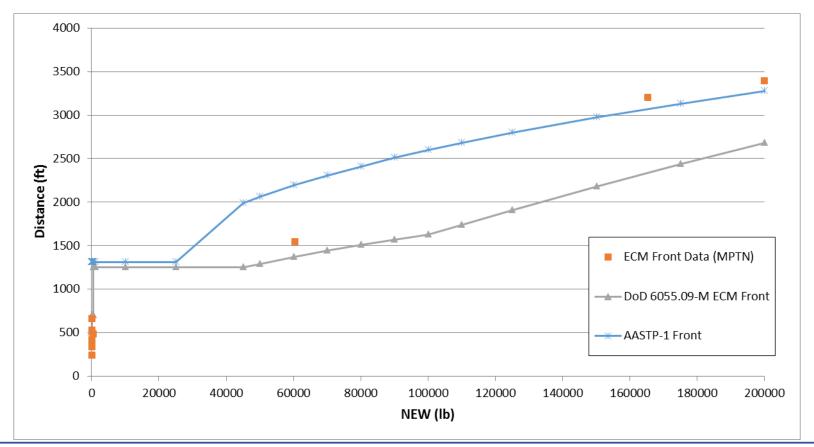
- Goal: Validate numerical modeling techniques by reproducing ECM tests pressure/impulse data
- Product: Documented set of coupled CFD/CSM models that reproduce results from past test data (mostly scaled)
- Realization:
 - –Large amount of past data (primarily scaled) that if can be reproduced provides high degree of confidence in prediction of ECM directional blast loads via numerical modeling
 - Various Kingery small scale tests
 - ESKIMO VI
 - Modular Igloo Test

–Numerical analysis coupling fluid-structure interaction is assumed to be necessary to accurately capture blast wave formation Focus Area 2.2: Numerical Analysis of Equivalent Full Scale

- Goal: Given that scaled test data can be adequately reproduced, rerun numerical simulation in full-size to account for inertial effects plus other scaling issues and compare/assess results
- Product: Documented set of coupled CFD/CSM models that predict ECM directional blast loads
- Realization:
 - -Given a successful comparison in Focus Area 2.1, rerun the analyses at full-scale for all scaled tests
 - If model can capture rationale for higher loads at scaled tests, then reasons shall be documented
 - If model doesn't capture any difference, design loads should be reassessed

–Result is a better definition of directional ECM blast loads at distance

Focus Area 3: ECM Debris Hazard



- Debris hazards from ECMs are poorly characterized above NEWs of 450 lb
- QD implies that debris controls IBD up to:
 - -45,000 lb for Front and Side
 - -100,000 lb Rear
- Debris IBD for large NEWs in ECMs is poorly understood, but limited data suggest:
 - -1250 ft for 45K lb out the front of an ECM is insufficient
 - -1250 ft for 45K lb out the side of an ECM is probably conservative
- Initial assessment of existing ECM test data has identified existing data gaps
- Test data necessary to fill in these knowledge gaps

ECM Debris IBD

Available test data does not support QD out the ECM front

NAVFAC EXWC: Technology Driven, Warfighter Focused

Focus Area 3.1: ECM Debris IBD Investigation

- Goal: Conduct a literature analysis of all available ECM test data and assess both PTN and MPTN debris IBD
- Product: Repository of ECM debris data, comparison of debris IBD data with current QD, and identification of knowledge gaps
- Realization:
 - -Study has been completed and database has been generated
 - -Plot for ECM Front MPTN Debris IBD presented on previous slide

Focus Area 3.2: Scaled ECM Test Series (Optional)

- Goal: 1) Conduct scaled ECM tests to fill in knowledge gaps for debris hazard, and 2) Use to optimize instrumentation for full-scale tests
- Product: 1) Scaled ECM test data for both debris and blast pressure, 2) validation on numerical prediction models, and 3) optimization of full-scale test layout
- Realization:
 - -TBD if even necessary
 - Efficacy of results not entirely clear at this point due to questions with scaled ECM test results

Focus Area 3.3 & 3.4: Full-Scale ECM Tests

- Goal: Produce two full-scale ECM tests with comprehensive debris collection and measured IMD & IBD blast loads
- Product: Fully documented test report with reliable blast and debris test data at NEW of interest
- Realization:
 - -Pre-test numerical simulations of directional blast loading secondary debris generation
 - -Conduct of full-scale ECM Test #1 NEW in the 45K to 60K range
 - –NEW of Test #2 will be determined by Test #1 results and numerical predictions
 - –Validation of "correct" ECM design loads for <u>future</u> ECM designs
 - -Will generate missing data for debris IBD at Front, Side, and Rear as well as feed into risk/consequence assessment models

Focus Area 4: ECM Earth Cover Requirements

- Per V2.E5.5.3.2 of DoD 6055.09-M, a fundamental requirement for an A/E storage facility to be designated an ECM is to maintain a minimum of 2 ft of earth cover
- V2.E5.5.3.1 provides additional guidance on fill
 - -Reasonably cohesive
 - -No stones heavier than 10 lb or 6-inch diameter
 - -No solid or wet clay
- Less than 2 ft of earth cover, e.g., 23 inches, results in large reduction of storage capacity if ECM is sited at minimum IMD
- Limited guidance on acceptable erosion control techniques

Focus Area 4.1: ECM Earth Cover Alternative Criteria

- Goal: Identify solution to siting ECMs where erosion has reduced earth cover to less than 2 feet
- Product: Proposed DoD 6055.09-M criteria change for existing ECMs with less than 2 feet of earth cover
- Realization:
 - -Testing and Modeling series to assess effects of less than 2 ft of earth cover on ECMs
 - -Assess effect of reduced earth cover on ECMs
 - Directional blast attenuation as a PES
 - Production of secondary debris as a PES
 - Structural response as an ES
 - Afforded protection from secondary debris impact as an ES
 - -ERDC is beginning to address this critical issue with Project MERCURY and associated modeling effort

Focus Area 4.2: ECM Erosion Control Solutions

- Goal: Identify erosion control solutions for ECM earth cover that do not adversely affect explosives safety aspects of ECM
- Product: Report with readily available/COTS approved erosion control solutions applicable to all DoD (CONUS & OCONUS) with concurrence by DoD explosives safety community
- Realization:
 - -First step is to identify solutions available that have minimal impact on explosives safety aspects
 - -Second step is to get concurrence from DoD ES community
 - –Document would also have agreed upon responses to FAQs

- Testing and Modeling initiative is intended to address ECM technology focus area requirements
- Intent is to fully utilize numerical modeling capabilities to supplement testing
 - -Testing is expensive
 - -Validated models produce "synthetic data"
- Program not intended to address standard ECM designs —Separate effort underway to address optimizing standard designs
- Finally, if you have a Navy Type I SP&P ECM you're looking to get rid of, I think I have a solution!