Combustion Behavior and Quantity Distance (QD) Siting

J. Covino, PhD DDESB

C. P. Romo, J. W. Phillips, A. I. Atwood and T. L. Boggs NAWCWD, China Lake, CA.

2018 International Explosives Safety Symposium and Exposition San Diego, Ca 7-9 August 2018

Outline

- Quantity Distance (Explosives Safety Separation Distance) for HD 1.3 Tables in DODM-6055.09-M Onset of 2nd degree burns **
- Background and motivation for current program ~ 75% of large mishaps initiate by fire
- Overview of Test results
- Modification of HD 1.3 tables to include heat flux requirement
- Conclusions and way-ahead

**Society of Fire Prevention Engineers, "Engineering Guide: Predicting 1st and 2nd Degree Skin Burns From Thermal Radiation," SFPE, Maryland (2000).

$$2R = D_{FIRE} = 10 \text{ x } W_{EFF} 1/3$$

Risk = *Probability of Event* × *Consequences* × *Exposure*

$$Risk = P_f = P_e \times P_{f|e} \times E_p$$

TB-700-2 49 CFR 173

Hazard Division	Hazard Type
1.1	Mass explosion
1.2.x	Non-mass explosion, fragment producing
1.3	Mass fire, minor blast or fragment
1.4	Moderate fire, no significant blast or fragment
1.5	Explosive substance, very insensitive (with mass explosion hazard)
1.6	Explosive article, extremely insensitive (no mass explosion hazard)

Electrostatic and electromagnetic influence

Rough handling and vibration

Effects of exposure to hot or cold environments

Mechanical defects

Solar radiation

Temperature shock

Abnormal functioning

Combat exposure

Fire Ball Diameters for Various Propellants and Explosives

*Thermische Wirkunge bwei Pulverabbranden und-detonationen, B 3113-23 Ueberarbeitete Fassur, December 1984. Partial English Translation.

- Milan AAP, 2004*
 - Magazine contained Comp A-5, M2 propellant, and M9 propellant
 - While returning 3 drums a drum tipped and propellant ignited
 - Fire spread to other materials in magazine
 - Two fatalities and one critical injury
 - Huge debris fragments at distances greater than the 1,250-foot IBD arc. One 6 x 8-feet fragment found at 3,100 feet away and other debris found approximately 2,050 feet away
- All fragments were secondary fragments originating from the structural elements of the ECM
- Majority of the secondary fragments were hazardous
- Current QD tables may need to be re-examined in light of the large number of hazardous fragments, and the high hazardous fragment density (greater than 1 hazardous fragment/600 square feet) that occurred outside of the 1,250-foot IBD arc."

^{• *}T. L. Boggs, K. P. Ford, and J. Covino, "Realistic Safe-Separation Distance Determination for Mass Fire Hazards," NAWCWD TM 8668, Naval Air Warfare Center Weapons Division (2013).

- Understand QD (explosives safety-separation distance) criteria for HD 1.3 materials
 - Effects of loading density on structural response
 - Pressure rupture of the structure under choked flow
 - Fireball/plume dimensions
- Determine influence of structural design and venting
- Understand rupture and propagation of debris
 - Rapid pressurization vs detonation
- Obtain data showing transitions from unchoked to choked conditions- for different configurations
- Validate pressurization and fragmentation predictions from existing models

• M1 Gun Propellant

Ingredient	Weight %
Nitrocellulose	85.00 ± 2.00
Dinitrotoluene (DNT)	10.00 ± 2.00
Dibutylphthalate (DBT)	5.00 ± 1.00
Diphenylamine (DPA)	1.00 ± 0.10
Lead carbonate	1.00 ±0.20
Potassium sulfate	1.00 ±0.30

Sample

Tests 1 & 2: Single Perforation – Higher Surface area

OD: 1.22 mm L: 5.03 mm Perf: 0.514 mm

Tests 3 -7: Seven Perforation – Longer Burn time [Note: Difference in scales]

OD: 4.77 mm L: 10.765 mm Perf: 0.451 mm

1

Test Structure

Tests 1, 3 & 5: 79-cm

Tests 2, 4, 6 & 7: 39-cm

Test Number	Grain Type	Propellant Weight (kg)	Loading Density (g/cm ³)	Number of Barrels	Structural Failure Observed
1	1P	134.55	0.017	3	No
2	1P	534.55	0.067	8	Yes
3	7P	120.00	0.015	3	No
4	7P	503.64	0.063	8	Yes
5	7P	120.00	0.015	3	No
6	7P	534.82	0.063	7	Yes
7	7P	240.55	0.030	3	Yes

Propellant Surface Area Differences Test 2* - 1P Test 4 - 7P

* Not all fragments < 200 grams collected

Surface Area Differences

- <u>Test 2-Higher Surface Area</u>
 - 2609 collected*
 - 2177 outside IBD
 - ~83 percent of collected
 - Largest = 8.4 kg
 - 32 @ distance> 76.2 m
 - Furthest at 105 m
- * Not all fragments 5-200 grams collected

- <u>Test 4 Lower Surface Area</u>
 - 3244 collected
 - 1458 outside IBD
 - ~45 percent of collected
 - Largest = 11.56 kg
 - 162 at distance > 76.2 m
 - Furthest at 156 m

Loading Density Differences

Test 6-0.063 g/cc

Loading Density Differences

- Test 6 0.063 g/cc
 - 3415 collected
 - 546 outside IBD
 - ~16 percent of collected
 - Largest = 19.01 kg
 - 19 at distance > 76.2 m
 - Furthest at 128 m

- Test 7 0.030 g/cc
 - 778 collected
 - 293 outside IBD
 - ~38 percent of collected
 - Largest = 3.48 kg
 - 16 at distance > 76.2 m

Structural Differences

Test 4-fails at roof

Test 6-fails at floor

Structural Differences

- <u>Test 4 fails at roof</u>
 - 3244 collected
 - 1458 outside IBD
 - ~45 percent of collected
 - Largest = 11.56 kg
 - 162 at distance > 76.2 m
 - Furthest at 156 m

- Test 6 fails at floor
 - 3415 collected
 - 546 outside IBD
 - ~16 percent of collected
 - Largest = 19.01 kg
 - 19 at distance > 76.2 m
 - Furthest at 128 m

Combustion and Structural Response

Relating the Plume/Fireball Formation With Internal Pressure, Test 4. Plume Formation and Structural Failure, Test 4.

HD 1.3 Test 4 at Pressure Drop

 $VAR = A_v / (V_{ch})^{2/3}$

What about a real magazine?

Assume loading to

500,000 lbs (226,796 kg)

Magazine Type and Dimensions	vine Type and Dimensions Maximum Loading Density Assuming 226796 kg NEW (g/cm ³)						
RC Box 421-80-06		0.364		0.316			
RC Circular Arc, NAVFAC 14 <mark>0</mark> 4310-1404 <mark>3</mark> 24							
24.38 m long, door area 9.29 m ²		0.43		0.1423			
24.38 m long, door area 14.86 m ²		0.43		0.228			
RC Arch 421-80-05							
27.43 m long, door area 5.95 m ²		0.3		0.0725			
27.43 m long, door area 9.29 m ²		0.3		0.113			
24.38 m long, door area 5.95 m ²		0.338		0.0785			
24.38 m long, door area 5.95 m ²		0.338		0.122			
18.29 m long, door area 5.95 m ²		0.45		0.0951			
18.29 m long, door area 9.29 m ²		0.45		0.148			
Steel Arch 421-80- <mark>0</mark> 1							
27.13 m long, door area 5.95 m ²		0.309		0.073			
27.13 m long, door area 9.29 m ²		0.309		0.114			
Lone Star, 18.29 m x 8.08 m x 3.89		0.252		0.0691			
Indian Head, 24.99 m x 7.62 m x 3.35 m		0.226		0.0691			
Radford, 25.04 m x 7.62 m x 3.96 m		0.191		0.0299			

IBD Vs. Mass (kg) With 2012 Proposed IBD Based on Heat Flux to Protect Personnel From 2nd Degree Burns

- Thermal stimuli account for over 75% of large mishaps
- IBD based on thermal flux to prevent the onset of second-degree burns (heat fluxes and exposure times experienced by personnel should be less than that given by the equation t=200q^{-1.46} where "t" is the time in seconds that a person is exposed and "q" is the received heat flux in kilowatts (kW) per m²)".
- A step-by-step risk assessment based on hazards should be considered for explosives storage facilities—choked vs un-choked, directional effects, structural and instrumentation debris, impulse, and blast
- Experiments and modeling efforts should be synergistic and consider hazards during the entire system life cycle
- Combustion properties of the HD 1.3 substances should be used to gain an understanding of the potential hazard response
 - Propellant surface area and it's role in pressurization
 - Confinement and structural effects are significant.
 - Tests where structure ruptured significant debris was found beyond IBD.

C. P. Romo, et al. The 6th International Symposium on Energetic Materials and their Applications 6-10 Nov., 2017, Tohoku University, Sendai, JAPAN; "Science and Technology of Energetic Materials, Vol. 79, No. 1 (2018)".

NAWCWD TM 8668 Realistic Safe-Separation Distance Determination for Mass Fire Hazards

NAWCWD TM 8742: Combustion of Hazard Division 1.3 M1 Gun Propellant in a Reinforced Concrete Structure

NAWCWD TM 8764: Combustion of Hazard Division 1.3 M1 Gun Propellant in a Reinforced Concrete Structure. Part 2. Tests 5 Through 7

Acknowledgements

The authors would like to acknowledge Dr. Clint Guymon (Safety Management Services, Inc.) for flux data based on the 2012 change to the DODM 6055.09-M.