> QUANTITATIVE RISK ANALYSIS OF AMMUNITION TRANSSHIPMENT IN HARBORS

innovation

for life

H.P.A. Dijkers and P.A. Hooijmeijer

CONTENTS

- Introduction
- > Method of risk analysis
 - > Scenario's
 - > Probability accidental explosion
 - > Explosion effects and consequences
 - > Quantitative risk analysis
- Actual case
- > Questions

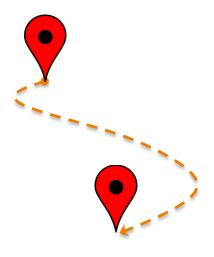
TRANSSHIPMENT IN PRACTICE

SOURCE OF RISK

- Ammunition transshipments are a source of risk to the surrounding area and the people nearby (involved in the transshipment or third parties)
- In a harbor generally large volumes and quantities of ammunition and explosives are transshipped, so the expected effects of an explosion are significant (reaching up to several kilometres)
- > The Dutch MoD tasked TNO to develop a method to quantify the risk associated with ammunition transshipments, so an informed decision can be made if the level of risk is acceptable. If not:
 - > Possible risk mitigation measures
 - Different harbor to perform transshipment(s)
- This presentation gives an overview of the method to perform a quantitative risk analysis of ammunition transshipments in harbors

MAIN CAUSES OF ACCIDENTS

- > Crane operations (hoisting of containers)
- > Fire on ship or truck
- > Accident with vehicles



METHOD FOR RISK ANALYSIS

- Quantitative risk analysis (QRA):
 - 1. Scenario's for transhipments
 - 2. Estimation of probability of accidental explosion
 - 3. Calculation of effects of accidental explosion
 - 4. Calculation of consequences (lethality) of accidental explosion
 - 5. Calculation of risks (consequences x probability)
 - 6. Assessment according to national norms
- QRA performed with TNO Transhipment Tool:
 - > Developed especially for this purpose, risk analysis of ammunition transhipments

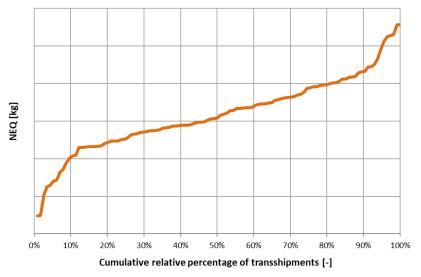
SCENARIO'S

- For a specific harbor a set of scenarios is defined, this set contains all transshipments that are planned to be performed in that particular harbor in a single year
- A scenario defines:
 - > Total amount of explosives and ammunition to be transshipped:
 - > NEQ in kg TNT
 - > Hazard Division: HD 1.1 is assumed for all ammunition, except HD 1.4 articles
 - Number of transshipments of a certain NEQ per year
 - Number of ISO-containers per transshipment of a certain NEQ
 - > Number of kilometers travelled by vehicles in a transshipment of a certain NEQ
 - Type of ship involved (CONRO, RORO, etc.)
 - > Amount of time needed for a transshipment

PROBABILITY OF AN EXPLOSION

- > Based on parameters for each scenario, probability of explosion is determined using:
- $P_{expl} = 2 \cdot \sum P_{event} \cdot N_{event} \cdot P_{expl,event}$
- For several types of accidents, based on historic data, frequencies and probability of explosion are estimated:

Event, unit	Event frequency / unit	Probability of explosion / event
Fire in a vehicle, km	5.0•10 ⁻⁹ / km	1.0
Accident or collision with a vehicle, km	1.0•10 ⁻⁷ / km	0.001
Fire aboard a CONRO/general cargo, # of ships	1.0•10⁻ ⁶ / ship	1.0
Fire aboard a container ship, # of ships	2.0 · 10 ⁻⁸ / ship	1.0
Crane accident with container, # of crane moves	2.0·10 ⁻⁶ / move	0.011


Cumulated to get total probability of explosion for specific scenario

NEQ PER TRANSSHIPMENT

- To help establish how many transhipments with a certain NEQ need to be planned in a particular port, historic data can be used
- Cumulative (relative) distribution can provide insight

Cumulative distribution of the NEQ NL ammunition transshipments. Based on data from the Dutch Ministry of Defence from the period 2002-2015

EFFECTS OF AN EXPLOSION

- > The following physical effects of an accidental explosion are calculated:
 - > Peak pressure of the blast wave
 - > Peak impulse of the blast wave
 - > Duration of positive phase of the blast wave
 - > Fragment and debris distribution
 - Heat radiation (HD 1.3)

CONSEQUENCES (LETHALITY)

- > The determined explosion effects are related to a probability of lethality using Probit relations:
- $Pr = A + B \cdot \ln X$
- > Probit relation either valid for people in the open field or inside a building:

QUANTITATIVE RISK ANALYSIS (1)

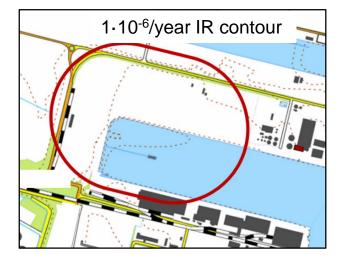
Main focus on third party risk, two common concepts to describe this:

innovation

- A. Individual risk (IR):
 - All transshipments that are planned to be performed in a particular harbor in a single year are considered
 - Does not take into account any buildings
 - > Assumes permanent presence of persons in the area of interest
 - For scenarios 1 to n: $IR(r) = \sum_{i=1}^{n} P_{expl,i} \cdot P_{lethal}(NEQ_i, r) \cdot N_i$
 - *P*_{expl,i} : probability of explosion
 - > *P*_{lethal} : probability of lethality for a certain location
 - > N_i : the number of transhipments per year of scenario i

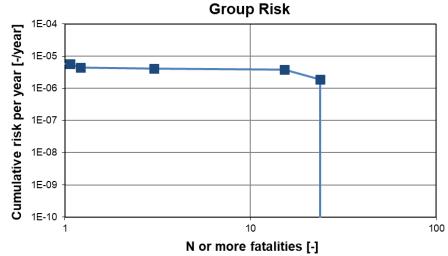
QUANTITATIVE RISK ANALYSIS (2)

- B. Societal risk or Group risk (GR):
 - All transshipments that are planned to be performed in a particular harbor in a single year are considered
 - > Accounts for actual presence of people in surrounding area and presence of buildings
 - Only within area of influence: area within 'Inhabited Building Distance' (IBD), obtained from AASTP-1, with an ISO-container as PES
 - > A lot of work to gather data:
 - > Amount of people present in houses, factories, offices etc.
 - > Many parties involved (companies, municipalities, etc.)
 - Presented in cumulative F(N) curve, expressing cumulative frequency per year that N or more fatalities can occur


ACTUAL CASE

- Case calculated for NL MoD
- Scenario's based planned transhipments for coming years (estimate)
- Risk analysis results:
 - Individual Risk
 - Group Risk

ACTUAL CASE: INDIVIDUAL RISK


- In NL 1.10⁻⁶/year is an important limit value for IR
- > Inhabited buildings inside this contour are considered an infringement
- > Contributions of all scenario's cumulated
- > Local and national government decide on acceptance of risk

for life

ACTUAL CASE: GROUP RISK

- Each blue dot represents a number of identical transhipments grouped in one scenario
- Blue curve represents the cumulated contributions of all scenarios
- Local and National government decide on acceptance of risk

POSSIBLE FUTURE DEVELOPMENTS

- > Improve debris and ballistic flight condition models for ISO-containers:
 - > Axisymmetric debris throw by ISO-containers is very crude assumption
 - > Klotz Group research can be used as basis
- > Below decks placement of ammunition containers:
 - > Research on influence of ship structure on explosion effects
 - > Debris and fragment throw, and blast propagation affected by ship structure
- > Efforts to develop better/alternative methods to determine probability of explosion:
 - Now, scarcity of data (fortunately), estimated uncertainty up to a factor of 2

